|
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
1. /егэ 22 марта/Вариант ь1.docx
2. /егэ 22 марта/Вариант ь11.docx
3. /егэ 22 марта/Вариант ь6.docx
4. /егэ 22 марта/Вариант ь 8.docx
5. /егэ 22 марта/Вариант ь10.docx
6. /егэ 22 марта/Вариант ь12.docx
7. /егэ 22 марта/Вариант ь13.docx
8. /егэ 22 марта/Вариант ь14.docx
9. /егэ 22 марта/Вариант ь15.docx
10. /егэ 22 марта/Вариант ь2.docx
11. /егэ 22 марта/Вариант ь3.docx
12. /егэ 22 марта/Вариант ь4.docx
13. /егэ 22 марта/Вариант ь5.docx
14. /егэ 22 марта/Вариант ь7.docx
15. /егэ 22 марта/Вариант ь9.docx
|
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
|
Вариан № 15 ------- математика-----11 класс ----Новокубанский район-----
2014
Вариант 15
Инструкция по выполнению работы
На выполнение заданий варианта КИМ по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание.
Часть 1 содержит 10 заданий (заданияВ1-В10) базового уровня сложности, проверяющих наличие практических математических знаний и умений.
Часть 2 содержит 11 заданий (задания В11-В15 и С1-С6) повышенного и высокого уровней по материалу курса математики средней школы, проверяющих уровень профильной математической подготовки.
Ответом к каждому из заданий В1-В15 является целое число или конечная десятичная дробь. При выполнении заданий С1 – С6 требуется записать полное решение и ответ.
Все бланки ЕГЭ заполняются яркими черными чернилами. Допускается использование гелевой, капиллярной или перьевой ручки.
При выполнении заданий Вы можете пользоваться черновиком. Обращаем Ваше внимание, что записи в черновике не будут учитываться при оценивании работы.
Советуем выполнять задания в том порядке, как они даны. Для экономии времени пропускайте задание, которое не удается выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, вы сможете вернуться к пропущенным заданиям.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Желаем успеха!
Часть 1
Ответом на задания В1-В10 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.
|
В1. Спидометр автомобиля показывает скорость в милях в час. Какую скорость (в милях в час) показывает спидометр, если автомобиль движется со скоростью 104 км в час? (Считайте, что 1 миля равна 1,6 км.)
В2. Налог на доходы составляет от заработной платы. После удержания налога на доходы Мария Константиновна получила 10440 рублей. Сколько рублей составляет заработная плата Марии Константиновны?
В3. На рисунке изображен график осадков в г. Калининграде с 4 по 10 февраля 1974 г. На оси абсцисс откладываются дни, на оси ординат — осадки в мм. Определите по рисунку, сколько дней из данного периода выпадало от 2 до 8 мм осадков.
В4. В среднем гражданин А. в дневное время расходует 120 кВтч электроэнергии в месяц, а в ночное время — 190 кВтч электроэнергии. Раньше у А. в квартире был установлен однотарифный счетчик, и всю электроэнергию он оплачивал по тарифу 2,2 руб. за кВтч. Год назад А. установил двухтарифный счeтчик, при этом дневной расход электроэнергии оплачивается по тарифу 2,2 руб. за кВтч, а ночной расход оплачивается по тарифу 0,5 руб. за кВтч.
В течение 12 месяцев режим потребления и тарифы оплаты электроэнергии не менялись. На сколько больше заплатил бы А. за этот период, если бы не поменялся счетчик? Ответ дайте в рублях.
В5. Найдите площадь квадрата, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
В6. В чемпионате по гимнастике участвуют 60 спортсменок: 9 из Венгрии, 27 из Румынии, остальные — из Болгарии. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Болгарии.
В7. Найдите корень уравнения .
В8. В треугольнике ABC , , . Найдите высоту AH.
В9. На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .
В10. Во сколько раз увеличится объем пирамиды, если ее высоту увеличить в сорок шесть раз?
Не забудьте перенести ответы в бланк ответов №1
|
Часть 2
Ответом на задания В1-В10 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.
|
В11. Найдите значение выражения .
В12. Зависимость объёма спроса q (единиц в месяц) на продукцию предприятия-монополиста от цены p (тыс. руб.) задаётся формулой q=120−10p. Выручка предприятия за месяц r (тыс. руб.) вычисляется по формуле r(p)=pq. Определите наибольшую цену p, при которой месячная выручка r(p) составит 320 тыс. руб. Ответ приведите в тыс. руб.
В13. В правильной четырехугольной пирамиде высота равна 2, объем равен 156. Найдите боковое ребро этой пирамиды.
В14. Байдарка в 9:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 2 часа, байдарка отправилась назад и вернулась в пункт А в 19:00 того же дня. Определите (в км/ч) скорость течения реки, если известно, что собственная скорость байдарки равна 4 км/ч.
В15. Найдите точку максимума функции .
Не забудьте перенести ответы в бланк ответов №1
|
Для записи решений и ответов на задания С1-С-6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания (С1,С2 и т.д.), а затем полное решение и ответ.
|
C1. а) Решите уравнение
б)Найдите все корни этого уравнения, принадлежащие отрезку
C2. В правильной четырехугольной призме ABCDA1B1C1D1 сторона основания равна 20, а боковое ребро AA1=7. Точка M принадлежит ребру A1D1 и делит его в отношении 2:3, считая от вершины D1. Найдите площадь сечения призмы плоскостью, проходящей через точки B,D и M.
С3. Решите систему неравенств
С4. В окружность радиуса R вписан треугольник АВС. Вторая окружность радиуса r, концентрическая с первой, касается одной стороны треугольника и делит каждую из двух других сторон на три равные части.
а) Докажите, что треугольник АВС равнобедренный.
б) Найдите r:R.
С5. Найдите все значения, при каждом из которых уравнение
имеет хотя бы один корень.
С6. Дано трехзначное натуральное число (число не может начинаться с нуля), не кратное 100.
а) Может ли частное этого числа и суммы его цифр быть равным 90?
б) Может ли частное этого числа и суммы его цифр быть равным 88?
в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр?
|
|
|