Главная страница

Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание


Скачать 61.42 Kb.
Название Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Дата 12.02.2016
Размер 61.42 Kb.
Тип Инструкция
1. /егэ 22 марта/Вариант ь1.docx
2. /егэ 22 марта/Вариант ь11.docx
3. /егэ 22 марта/Вариант ь6.docx
4. /егэ 22 марта/Вариант ь 8.docx
5. /егэ 22 марта/Вариант ь10.docx
6. /егэ 22 марта/Вариант ь12.docx
7. /егэ 22 марта/Вариант ь13.docx
8. /егэ 22 марта/Вариант ь14.docx
9. /егэ 22 марта/Вариант ь15.docx
10. /егэ 22 марта/Вариант ь2.docx
11. /егэ 22 марта/Вариант ь3.docx
12. /егэ 22 марта/Вариант ь4.docx
13. /егэ 22 марта/Вариант ь5.docx
14. /егэ 22 марта/Вариант ь7.docx
15. /егэ 22 марта/Вариант ь9.docx
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание

Вариан №5 ------- математика-----11 класс ----Новокубанский район-----

2014



Вариант 5

Инструкция по выполнению работы

На выполнение заданий варианта КИМ по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание.

Часть 1 содержит 10 заданий (заданияВ1-В10) базового уровня сложности, проверяющих наличие практических математических знаний и умений.

Часть 2 содержит 11 заданий (задания В11-В15 и С1-С6) повышенного и высокого уровней по материалу курса математики средней школы, проверяющих уровень профильной математической подготовки.

Ответом к каждому из заданий В1-В15 является целое число или конечная десятичная дробь. При выполнении заданий С1 – С6 требуется записать полное решение и ответ.

Все бланки ЕГЭ заполняются яркими черными чернилами. Допускается использование гелевой, капиллярной или перьевой ручки.

При выполнении заданий Вы можете пользоваться черновиком. Обращаем Ваше внимание, что записи в черновике не будут учитываться при оценивании работы.

Советуем выполнять задания в том порядке, как они даны. Для экономии времени пропускайте задание, которое не удается выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!
Часть 1

Ответом на задания В1-В10 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.


В1. На счету Юлиного мобильного телефона было 77 рублей, а после разговора с Антоном осталось 41 рубль. Сколько минут длился разговор с Антоном, если одна минута разговора стоит 1 рубль 50 копеек.

В2. Шариковая ручка стоит 30 рублей. Какое наибольшее число таких ручек можно будет купить на 500 рублей после повышения цены на 20%?

В3. На рисунке жирными точками показана цена нефти на момент закрытия биржевых торгов во все рабочие дни с 4 по 19 апреля 2002 года. По  горизонтали указываются числа месяца, по вертикали — цена барреля нефти в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа цена нефти на момент закрытия торгов составила 24 доллара за баррель.

http://www.fipi.ru/os11/docs/ac437b34557f88ea4115d2f374b0a07b/questions/ma.e11.b2.31%28copy1%29/img740472n1.png

В4. Рейтинговое агентство определяет рейтинг соотношения «цена-качество» электрических фенов для волос. Рейтинг вычисляется на основе средней цены p, а также оценок функциональности f, качества qи дизайна d, которые эксперты оценивают целыми числами от 0 до 4. Итоговый рейтинг вычисляется по формуле

 r=3\left(f+q\right)+d-0,01p.

В таблице даны оценки каждого показателя для нескольких моделей фенов. Определите, какая модель имеет наименьший рейтинг. В ответ запишите значение этого рейтинга.

Модель фена

Средняя цена

Функциональность

Качество

Дизайн

А

5700

0

0

2

Б

3500

3

4

3

В

4200

3

3

4

Г

5700

4

3

0


В5. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см \times1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

b6-100500-13-5.eps

В6. В сборнике билетов по истории всего 40 билетов, в 16 из них встречается вопрос по смутному времени. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по смутному времени.

В7. Найдите корень уравнения \log_4 (5 -x)=\log_4 (2 -x) +1.

В8. Найдите градусную меру дуги acокружности, на которую опирается угол abc. Ответ дайте в градусах.

ma.ob10.b4.267/innerimg0.jpg

В9. На рисунке изображён график дифференцируемой функции y=f(x) и отмечены семь точек на оси абсцисс: x​1, x​2, x​3, x​4, x​5, x​6, x​7. В скольких из этих точек производная функции f(x) положительна?

http://www.fipi.ru/os11/docs/ac437b34557f88ea4115d2f374b0a07b/questions/ma.e12.b8.02_28copy1_29/xs3qstsrc21c0fd3d3e019b0a4fc97e95cf5af6bd_1_1326896554.png

В10.

http://www.fipi.ru/os11/docs/ac437b34557f88ea4115d2f374b0a07b/questions/ma.e12.b11.05_28copy1_29/xs3qstsrc023f4af39e84809b4e8cfb41d0351ab3_1_1323693620.png

Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы – прямые).



Не забудьте перенести ответы в бланк ответов №1

Часть 2

Ответом на задания В1-В10 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.


В11. Найдите значение выражения \frac{18\sin158^{\circ}}{\cos79^{\circ}\cdot \cos11^{\circ}}.

В12. В ходе распада радиоактивного изотопа его масса уменьшается по закону m(t) = m_0 \cdot 2^{-\frac{t}{t}}, где m_0(мг) — начальная масса изотопа, t (мин.) — время, прошедшее от начального момента, t(мин.) — период полураспада. В начальный момент времени масса изотопа m_0 = 16 мг. Период его полураспада t = 10 мин. Через сколько минут масса изотопа будет равна 2 мг?

В13. Основанием пирамиды является прямоугольник со сторонами 4 и 5. Ее объем равен 40. Найдите высоту этой пирамиды.

В14. Первые 200 км автомобиль ехал со скоростью 60 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 140 км — со скоростью 120 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

В15. Найдите точку минимума функции y=-\frac{x}{x^2+1}.


Не забудьте перенести ответы в бланк ответов №1



Для записи решений и ответов на задания С1-С-6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания (С1,С2 и т.д.), а затем полное решение и ответ.


C1.а) Решите уравнение

б)Найдите все корни этого уравнения, принадлежащие отрезку
C2. В правильной четырехугольной призме ABCDA1B1C1D1 сторона основания равна 20, а боковое ребро AA1=7. Точка M принадлежит ребру A1D1 и делит его в отношении 2:3, считая от вершины D1. Найдите площадь сечения призмы плоскостью, проходящей через точки B,D и M.
С3. Решите систему неравенств

С4. В окружность радиуса R вписан треугольник АВС. Вторая окружность радиуса r, концентрическая с первой, касается одной стороны треугольника и делит каждую из двух других сторон на три равные части.

а) Докажите, что треугольник АВС равнобедренный.

б) Найдите r:R.
С5. Найдите все значения, при каждом из которых уравнение

имеет хотя бы один корень.
С6. Дано трехзначное натуральное число (число не может начинаться с нуля), не кратное 100.

а) Может ли частное этого числа и суммы его цифр быть равным 90?

б) Может ли частное этого числа и суммы его цифр быть равным 88?

в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр?