Главная страница

Пояснительная записка Нормативные акты и учебно-методические документы


Скачать 364.26 Kb.
Название Пояснительная записка Нормативные акты и учебно-методические документы
Дата 10.02.2016
Размер 364.26 Kb.
Тип Пояснительная записка
1. /Рабочая программа по математике 7,9/Календарно-тематическое планирование Алгебра 7,9/Алгебра 7 класс.docx
2. /Рабочая программа по математике 7,9/Календарно-тематическое планирование Алгебра 7,9/Алгебра 9 класс.doc
3. /Рабочая программа по математике 7,9/Календарно-тематическое планирование Геометрия 7,9/геометрия 7 класс.doc
4. /Рабочая программа по математике 7,9/Календарно-тематическое планирование Геометрия 7,9/геометрия 9 класс.doc
5. /Рабочая программа по математике 7,9/пояснительная записка.doc
6. /Рабочие программы по ф-ре/1-4 ПОЯС. ЗАПИСКА Красников В.В..doc
7. /Рабочие программы по ф-ре/Рабочая программа по фре 5-9, 10-11 классы Красников В.В..doc
8. /рабочие программы МХК, ИЗО, ОБЖ/РОгудеева ОБЖ Рабочая программа по ОБЖ 6 класс.docx
9. /рабочие программы МХК, ИЗО, ОБЖ/Рогудеева ИЗО Рабочая программа к учебникам под редакциейТ.Я.Шпикаловой(5-7кл.).doc
10. /рабочие программы МХК, ИЗО, ОБЖ/Рогудеева Рабочая программа МХК 10 11 класс 2013-2014 .doc
11. /русский и литература/Рабочая программа по литературе 5-9 классы - новая !.doc
12. /русский и литература/Рабочая программа по русскому языку 10 класс.doc
13. /русский и литература/Рабочая программа по русскому языку для 5-9!.doc
14. /русский и литература/рабочая программа по литературе 10 класс.doc
15. /русский и литература/рабочая программа по литературе 5 кл. Коровиной - новая ! (2).doc
16. /русский и литература/рабочая программа по русскому языку 5 класс - Красникова Т.А..doc
Тематическое планирование 7 класс Планирование составлено на основе
Тематическое планирование 9 класс Планирование составлено на основе
Кол-во часов
Урока Дата Содержание материала по геометрии Время изучения Цели и задачи
Пояснительная записка Нормативные акты и учебно-методические документы
Программа по физкультуре 1-4 классы Красников В. В. Пояснительная записка
Программа по физкультуре 5 9 классы Красников В. В. Рабочая программа по физической культуре для 5-9 классов
Программа по обж 6 класс Составитель Л. А. Рогудеева, учитель обж пояснительная записка
Программа по изобразительному искусству для 5-7 классов
Программа по мировой художественной культуре 10, 11 класс (базовый уровень)
Программа по литературе для общеобразовательных учреждений. 5-11 кл. / Т. Ф. Курдюмова, Н. А. Демидова, Е. Н. Колокольцев и др.; под ред. Т. Ф. Курдюмовой. 4-е изд., стереотип. М.: Дрофа, 2006. 93 с
Программа по русскому языку в 10 классе Пояснительная записка
Программа по русскому языку для 5-9 класса Пояснительная записка
Программа по литературе 10 класс Пояснительная записка
Программа по литературе в 5 классе по программе В. Я. Коровиной
Программа по русскому языку 5 класс (7 часов в неделю) Учитель Красникова Т. А. Пояснительная записка

Пояснительная записка

Нормативные акты и учебно-методические документы
Настоящая программа по математике для основной общеобразовательной школы 7, 9 классов составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), примерной программы для общеобразовательных школ по математике 5-11 классы к учебному комплексу для 7-9 классов (Алгебра. Учебники для 7, 9 классов./ Ю.Н.Макрычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова. - М.: Просвещение, 2008. Рекомендован Министерством образования и науки РФ к использованию в образовательном процессе в общеобразовательных учреждениях. Геометрия. Учебники для 7, 9 классов./ Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. - М.: Просвещение, 2009. Рекомендован Министерством образования и науки РФ к использованию в образовательном процессе в общеобразовательных учреждения.)

Данная программа отвечает требованиям государственного стандарта, базового учебного плана общеобразовательных учреждений РФ, учитывает основные требования, предъявляемые к современным УМК по математике, и соотносится с действующей примерной программой по математике в общеобразовательной школе, рекомендованной Министерством образования и науки Российской Федерации.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.


Основные развивающие и воспитательные цели

 Развитие:

  • Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • Математической речи;

  • Сенсорной сферы; двигательной моторики;

  • Внимания; памяти;

  • Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

 Воспитание:

  • Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • Волевых качеств;

  •  Коммуникабельности;

  •  Ответственности.


Цели и задачи, решаемые при реализации рабочей программы

  • расширить сведения о свойствах функ­ций, ознакомить учащихся со свойствами и графиком квадратич­ной функции, выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной;

  • выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем;

  • дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида;

  • научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач;

  • развить умение применять тригонометрический аппарат при решении геометрических задач;

  • расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы их вычисления;

  • познакомить учащихся с понятием движения и его свойствами, с основными видами движений;

  • дать представление о статистических закономерностях в реальном мире и о различных способах их изучения, об осо­бенностях выводов и прогнозов, носящих вероятностный ха­рактер;

  • формировать ИКТ компетентность через уроки с элементами ИКТ;

  • формировать навык работы с тестовыми заданиями;

  • подготовить учащихся к итоговой аттестации в новой форме.


Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

  • развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В курсе алгебры 9 класса расширяются сведения о свойствах функ­ций, познакомить обучающихся со свойствами и графиком квадратич­ной функции; систематизируются и обобщаются сведения о решении целых и дробных рациональных уравнений с одной переменной, формируется умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0; вырабатывается умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; даются понятия об арифметической и гео­метрической прогрессиях как числовых последовательностях осо­бого вида; знакомятся обучающихся с понятиями пе­рестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; вводятся понятия относительной частоты и вероятности случайного события.

Место предмета в учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с V по IX класс.

Математика изучается в VIII- IX классах по 5 ч в неделю, всего по 170 – 175 ч.

Федеральный базисный учебный план для образовательных учреждений РФ отводит по 5 часов в неделю на курс математики VIII кл. (3 часа – алгебра; 2 часа – геометрия). Всего 175 часов ( алгебра – 105 часа; геометрия- 70 часов).

Федеральный базисный учебный план для образовательных учреждений РФ отводит по 5 часов в неделю на курс математики IX кл. (3 часа – алгебра; 2 часа – геометрия). Всего 170 часов ( алгебра – 102 часа; геометрия- 68 часов).

Роль учебного предмета в достижении планируемых результатов

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • систематизировать и обобщить сведе­ния о решении целых и дробных рациональных уравнений с од­ной переменной, сформировать умение решать неравенства вида ах2 + Ьх + с > 0 или ах2 + Ьх + с < 0, где а є 0;

  • выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя перемен­ными, и текстовые задачи с помощью составления таких систем;

  • познакомиться с понятиями арифметической и гео­метрической прогрессий как числовых последовательностей осо­бого вида;

  • познакомиться с начальными сведения­ми из теории вероятностей;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развивать логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • формирования математического аппа­рата для решения задач из математики, смежных предметов, окружающей реальности;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, позна­комиться с простейшими пространственными телами и их свой­ствами;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об осо­бенностях выводов и прогнозов, носящих вероятностный ха­рактер;

  • сформировать представления об изучаемых понятиях и мето­дах как важнейших средствах математического моделирования реальных процессов и явлений;

  • научиться проводить операции над векторами, научиться вычислять длину и координаты вектора, угол между векторами;

  • научиться решать геометрические задачи, опираясь на изученные свой­ства фигур и отношений между ними, применяя дополнитель­ные построения, алгебраический и тригонометрический аппа­рат, соображения симметрии;

  • научиться проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • нагляднее представить изучаемый материал;

  • освоить проектную деятельность;

  • развивать творческие способности.



Информация о количестве учебных часов



Классы


Четверти


Кол-во

Количество часов

Количество часов




Алгебра

Геометрия

в неделю

в четверть

в неделю

в четверть













7 класс

1

8

3

24

2

16




2

7

3

21

2

14




3

11

3

33

2

22




4

9

3

27

2

18

9 класс

1

8

3

24

2

16




2

7

3

21

2

14




3

11

3

33

2

22




4

8




3

24

2

16


СОДЕРЖАНИЕ ОБУЧЕНИЯ
Принципы отбора содержания связаны с преемственностью целей образования на различных ступенях и уровнях обучения, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся.

Алгебра

Свойства функций. Квадратичная функция
Функция. Свойства функций. Квадратный трехчлен. Разло­жение квадратного трехчлена на множители. Функция у = ах2 + Ьх + с, ее свойства и график. Степенная функция.

Основная цель — расширить сведения о свойствах функ­ций, ознакомить учащихся со свойствами и графиком квадратич­ной функции.

В начале темы систематизируются сведения о функциях. По­вторяются основные понятия: функция, аргумент, область опре­деления функции, график. Даются понятия о возрастании и убы­вании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квад­ратного трехчлена, разложении квадратного трехчлена на мно­жители .

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + Ь, у = а (хт)2. Эти сведения используются при изуче­нии свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + Ьх + с может быть получен из графика функции у = ах2 с помощью двух па­раллельных переносов. Приемы построения графика функции у = ах2 + Ьх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащих­ся умения указывать координаты вершины параболы, ее ось сим­метрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функ­ции, а также промежутки, в которых функция сохраняет знак.

Учащиеся знакомятся со свойствами степенной функции у = хп при четном и нечетном натуральном показателе п. Вводит­ся понятие корня n-й степени. Учащиеся должны понимать смысл записей вида . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.
Уравнения и неравенства с одной переменной
Целые уравнения. Дробные рациональные уравнения. Нера­венства второй степени с одной переменной. Метод интервалов.

Основная цель — систематизировать и обобщить сведе­ния о решении целых и дробных рациональных уравнений с од­ной переменной, сформировать умение решать неравенства вида ах2 + Ьх + с > 0 или ах2 + Ьх + с < 0, где а 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобще­ние и углубление сведений об уравнениях. Вводятся понятия це­лого рационального уравнения и его степени. Учащиеся знако­мятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспо­могательной переменной. Метод решения уравнений путем введе­ния вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмиче­ских и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + Ьх + с > 0 или ах2 + Ьх + с < 0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы, ее расположение относительно оси Ох).

Учащиеся знакомятся с методом интервалов, с помощью ко­торого решаются несложные рациональные неравенства.


Уравнения и неравенства с двумя переменными


Уравнение с двумя переменными и его график. Системы урав­нений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя перемен­ными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с дву­мя переменными. Основное внимание уделяется системам, в ко­торых одно из уравнений первой степени, а другое второй. Из­вестный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к реше­нию квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограни­чиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет при­вести примеры графического решения систем уравнений. С помо­щью графических представлений можно наглядно показать уча­щимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет сущест­венно расширить класс содержательных текстовых задач, решае­мых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными использу­ются при иллюстрации множеств решений некоторых простей­ших неравенств с двумя переменными и их систем.
Прогрессии
Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых п членов прогрессии. Бесконечно убываю­щая геометрическая прогрессия.

Основная цель — дать понятия об арифметической и гео­метрической прогрессиях как числовых последовательностях осо­бого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вы­рабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых п членов про­грессий, помимо своего основного назначения, позволяет неодно­кратно возвращаться к вычислениям, тождественным преобразо­ваниям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметиче­ской и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.
Элементы комбинаторики и теории вероятностей


Комбинаторное правило умножения. Перестановки, размеще­ния, сочетания. Относительная частота и вероятность случайного события.

Основная цель — ознакомить учащихся с понятиями пе­рестановки, размещения, сочетания и соответствующими форму­лами для подсчета их числа; ввести понятия относительной час­тоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требу­ется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, ко­торое используется в дальнейшем при выводе формул для подсче­та числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внима­ние учащихся на различие понятий «размещение» и «сочета­ние», сформировать у них умение определять, о каком виде ком­бинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведения­ми из теории вероятностей. Вводятся понятия «случайное собы­тие», «относительная частота», «вероятность случайного собы­тия». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероят­ности можно применять только к таким моделям реальных собы­тий, в которых все исходы являются равновозможными.

Геометрия

Векторы. Метод координат

Понятие вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание дол­жно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Соотношения между сторонами и углами треугольника.
Скалярное произведение векторов

Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­ка (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач.

Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­нии геометрических задач.

Длина окружности и площадь круга
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о много­угольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоуголь­ника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помо­щью описанной окружности решаются задачи о построении пра­вильного шестиугольника и правильного 2га-угольника, если дан правильный /г-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружно­сти и площади круга. Вывод опирается на интуитивное представ­ление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его пери­метр стремится к длине этой окружности, а площадь — к площа­ди круга, ограниченного окружностью.
Движения
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. На­ложения и движения.

Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотре­нии видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основ­ных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движенц­ем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий нало­жения и движения.
Об аксиомах геометрии


Беседа об аксиомах геометрии.

Основная цель — дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.
Начальные сведения из стереометрии
Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: ци­линдр, конус, сфера, шар, формулы для вычисления их площа­дей поверхностей и объемов.

Основная цель — дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основ­ными формулами для вычисления площадей поверхностей и объ­емов тел.

Рассмотрение простейших многогранников (призмы, парал­лелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе нагляд­ных представлений, без привлечения аксиом стереометрии. Фор мулы для вычисления объемов, указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площа­дей боковых поверхностей цилиндра и конуса получаются с по­мощью разверток этих поверхностей, формула площади сферы приводится без обоснования.
Повторение. Решение задач

Планируемые результаты к уровню подготовки выпускников основной школы

АРИФМЕТИКА

Уметь:

выполнять устный счет с целыми числами, обыкновенными и десятичными дробями;

переходить от одной формы записи чисел к другой, выбирая наиболее подходящую, в зависимости от конкретной ситуации; представлять десятичную дробь в виде обыкновенной и в про­стейших случаях обыкновенную в виде десятичной, проценты в виде дроби и дробь в виде процентов; применять стандарт­ный вид числа для записи больших и малых чисел; выполнять умножение и деление чисел, записанных в стандартном виде;

изображать числа точками на координатной прямой;

выполнять арифметические действия с рациональными чис­лами, сравнивать рациональные числа; находить значения степеней с целыми показателями и корней; находить значе­ния числовых выражений;

округлять целые числа и десятичные дроби, находить при­ближенное значение числового выражения; пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные едини­цы через более мелкие и наоборот;

решать текстовые задачи, включая задачи на движение и ра­боту; задачи, связанные с отношением и с пропорционально­стью величин; основные задачи на дроби и на проценты; зада­чи с целочисленными неизвестными.

Применять полученные знания:

для решения несложных практических расчетных задач, в том числе, с использованием при необходимости справочных материалов и простейших вычислительных устройств; для устной прикидки и оценки результатов вычислений; для проверки результата вычисления на правдоподобие, исполь­зуя различные приемы; для интерпретации результатов реше­ния задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
АЛГЕБРА

Уметь:

составлять буквенные выражения и формулы по условиям за­дач, осуществлять подстановку одного выражения в другое, осуществлять в выражениях и формулах числовые подстанов­ки и выполнять соответствующие вычисления, выражать из формул одни переменные через другие;

выполнять основные действия со степенями с целыми пока­зателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выпол­нять тождественные преобразования рациональных выраже­ний;

применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выраже­ний, содержащих квадратные корни;

решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы уравнений (линейные и системы, в которых одно уравнение второй, а другое первой степени);

решать линейные неравенства с одной переменной и их систе­мы, квадратные неравенства;

решать текстовые задачи алгебраическим методом, интерпре­тировать полученный результат, проводить отбор решений, учитывать ограничения целочисленности, диапазона измене­ния величин;

определять значения тригонометрических выражений по за­данным значениям углов;

находить значения тригонометрических функций по значе­нию одной из них;

определять координаты точки в координатной плоскости, строить точки с заданными координатами; решать задачи на координатной плоскости: изображать различные соотношения между двумя переменными, находить координаты точек пере­сечения графиков;

применять графические представления при решении уравне­ний, систем, неравенств;

находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу;

строить графики изученных функций, описывать их свойства, определять свойства функции по ее графику;

распознавать арифметические и геометрические прогрессии, использовать формулы общего члена и суммы нескольких первых членов.

Применять полученные знания:

для выполнения расчетов по формулам, понимая формулу как алгоритм вычисления; для составления формул, выра­жающих зависимости между реальными величинами; для на­хождения нужной формулы в справочных материалах; при моделировании практических ситуаций и исследовании построенных моделей (используя аппарат алгебры);

при интерпретации графиков зависимостей между величинами, переводя на язык функций и исследуя реальные зависимости;

для расчетов, включающих простейшие тригонометрические формулы;

при решении планиметрических задач с использованием ап­парата тригонометрии.

ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Уметь:

оценивать логическую правильность рассуждений, в своих до­казательствах использовать только логически корректные действия, понимать смысл контрпримеров;

извлекать информацию, представленную в таблицах, на диа­граммах, на графиках; составлять таблицы; строить диаграм­мы и графики;

решать комбинаторные задачи путем систематического пере­бора возможных вариантов и с использованием правила умно­жения;

вычислять средние значения результатов измерений; находить частоту события;

в простейших случаях находить вероятности случайных собы­тий, в том числе с использованием комбинаторики.

Применять полученные знания:

при записи математических утверждений, доказательств, ре­шении задач;

в анализе реальных числовых данных, представленных в виде диаграмм, графиков;

при решении учебных и практических задач, осуществляя систематический перебор вариантов;

при сравнении шансов наступления случайных событий;

для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией.

ГЕОМЕТРИЯ

Уметь:

распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, исполь­зуя определения, свойства, признаки;

изображать планиметрические фигуры, выполнять чертежи по условиям задач, осуществлять преобразования фигур;

распознавать на чертежах, моделях и в окружающей обста­новке основные пространственные тела, изображать их; пред­ставлять их сечения и развертки;

вычислять значения геометрических величин (длин, углов, площадей, объемов);

решать геометрические задачи, опираясь на изученные свой­ства фигур и отношений между ними, применяя дополнитель­ные построения, алгебраический и тригонометрический аппа­рат, соображения симметрии;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

решать основные задачи на построение с помощью циркуля и линейки: угла, равного данному; биссектрисы данного угла; серединного перпендикуляра к отрезку; прямой, параллель­ной данной прямой; треугольника по трем сторонам;

решать простейшие планиметрические задачи в пространстве.

Применять полученные знания:

при построениях геометрическими инструментами (линейка, угольник, циркуль, транспортир);

для вычисления длин, площадей основных геометрических фигур с помощью формул (используя при необходимости справочники и технические средства).


Описание материально-технического обеспечения

Учебники:

    1. Алгебра: Учеб. для 9 кл. общеобразоват. учреждений / Ю. Н, Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского. – 9-е изд. – М.: Просвещение, 2008. – 238 с.: ил.

    2. Геометрия 7 – 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2009.



Дополнительная литература:


  1. В. И. Жохов Уроки алгебры в 9 классе: кн. для учителя/ В.И.Жохов, Л.Б.Крайнева. - М.: Просвещение, 2008.

  2. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл./ Л.В.Кузнецова, С.Б Суворова, Е.А.Бунимович и др. - М.: Просвещение, 2006 - 2008.

  3. В. И. Жохов Геометрия 7-9 кл.: кн. для учителя/ В.И.Жохов, Л.Б.Крайнева. - М.: Просвещение, 2003 - 2008.

  4. Б.Г.Зив Геометрия: дидакт. материалы для 9 класса.- М.: Просвещение, 2004 – 2008.

  5. Н.Ф. Гаврилова Поурочные разработки по геометрии 9 кл./ М.: Вако, 2006

  6. В.А.Гольдич Алгебра. Решение уравнений и наравенств.-С-Пб. «Литера», 2005

  7. Л.В.Кузнецова, С.Б Суворова Государственная итоговая аттестация выпускников 9 класса в новой форме./ М. «Интеллект-центр», 2009.

  8. В.Н.Литвиненко, Г.К.Безрукова Сборник задач по геометрии, 9 класс./ М. «Экзамен», 2008.


Перечень средств ИКТ, необходимых для реализации программы


Аппаратные средства
•    Компьютер
•    Проектор
•    Принтер
•    Модем
•    Устройства вывода звуковой информации — наушники для индивидуальной работы со звуковой информацией
•    Устройства для ручного ввода текстовой информации и манипулирования экранными объектами — клавиатура и мышь.
•    Устройства для записи (ввода) визуальной и звуковой информации: сканер; фотоаппарат; микрофон.

Интернет-ресурсы
http://metodist.lbz.ru/

http://nsportal.ru/

http://www.metod-kopilka.ru/

http://www.klyaksa.net/

http://school-collection.edu.ru/

http://www.edu.ru/

http://www.fipi.ru/

http://kpolyakov.narod.ru/

Система оценки планируемых результатов

1. Оценка письменных контрольных работ обучающихся по математике.



Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

2. Оценка устных ответов обучающихся по математике



Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

      • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

      • незнание наименований единиц измерения;

      • неумение выделить в ответе главное;

      • неумение применять знания, алгоритмы для решения задач;

      • неумение делать выводы и обобщения;

      • неумение читать и строить графики;

      • неумение пользоваться первоисточниками, учебником и справочниками;

      • потеря корня или сохранение постороннего корня;

      • отбрасывание без объяснений одного из них;

      • равнозначные им ошибки;

      • вычислительные ошибки, если они не являются опиской;

      • логические ошибки.


3.2. К негрубым ошибкам следует отнести:

      • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

      • неточность графика;

      • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

      • нерациональные методы работы со справочной и другой литературой;

      • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

      • нерациональные приемы вычислений и преобразований;

      • небрежное выполнение записей, чертежей, схем, графиков.


Проектно - исследовательская работа на уроках математики

В последнее десятилетие одним из наиболее популярных в практике школьного обучения стал метод проектов, который изначально понимался как организация  специальной исследовательской деятельности учащихся в какой-либо практической области. На сегодняшний день в нашей стране не так много информации об использовании метода проектов в обучении математике. Очевидно, сложность самой математики часто служит оправданием для традиционной позиции учителя, ведь проще подробно объяснить и «нарешать» определенное количество стандартных примеров, чем создать детям условия для самостоятельного изучения нового.

Для учителя математики наиболее привлекательным в данном методе является то, что в процессе работы над учебным проектом у школьников:

- появляется возможность осуществления приблизительных, «прикидочных» действий, не оцениваемых немедленно строгим контролером – учителем;

- зарождаются основы системного мышления;

- формируются навыки выдвижения гипотез, формирования проблем, поиска аргументов;

- развиваются творческие способности, воображение, фантазия;

- воспитываются целеустремленность и организованность, расчетливость и предприимчивость, способность ориентироваться в ситуации неопределенности.

Кроме того, в процессе выполнения проекта происходит естественное обучение совместным интеллектуальным действиям.

Задача учителя – помочь ученику стать свободной, творческой и ответственной личностью. Проектно-исследовательский подход дает новые возможности для решения этой задачи, поскольку этот метод характеризуется высокой степенью самостоятельности, формирует умения работы с информацией, помогает выстроить структуру своей деятельности, учит обобщать и делать выводы. А самое главное помогает учиться не только ученику, но и учителю. Изучение источников помогло найти отправные точки в осуществлении проектно-исследовательской деятельности и систематизировать свою работу.

Основной принцип работы в условиях проектной деятельности – опережающее самостоятельное ознакомление школьников с учебным материалом и коллективное обсуждение на уроках полученных результатов, которые оформляются в виде определений и теорем. В этом случае урок полностью утрачивает свои традиционные основания и становится новой формой общения учителя и учащихся в плане производства нового для учеников знания.

Основные этапы организации проектной деятельности учащихся:

1.      Подготовка к выполнению проекта (формирование групп, выдача заданий).

2.      Планирование работы (распределение обязанностей, определение времени индивидуальной работы).

3.      Исследование (учащиеся осуществляют поиск, отбор и анализ нужной информации; экспериментируют, находят пути решения возникающих проблем, открывают новые для себя знания по теме «Треугольники»; учитель корректирует ход выполнения работы).

4.      Обобщение результатов (учащиеся обобщают полученную информацию, формулируют выводы и оформляют материал для групповой презентации).

5.      Презентация (итоговый отчет каждой группы осуществляется в конце учебного года, учащиеся представляют «портфолио»).

6.      Оценка результатов проектной деятельности и подведение итогов (каждый ученик оценивает ход и результат собственной деятельности в группе, каждая рабочая группа оценивает деятельность своих участников, учитель оценивает деятельность каждого ученика, подводит итоги проведенной учащимися работы, отмечает успехи каждого).

Цель первого этапа – это ориентация ребенка на успех. Соблюдения принципа добровольности выбора области и темы исследования позволяют выйти на индивидуальную траекторию развития ученика. Уровень субъектных отношений помогает уйти от традиционной схемы, в которую ученик и учитель разведены по разные стороны – обучающий и обучаемый, говорящий и слушающий, запоминающий, проверяющий и проверяемый.

Возникают иные связи: “коллега” – “коллега”, “наставник” – “младший товарищ”, основанные на личностном общении педагога и ученика. Зачастую именно эта работа помогает  в дальнейшем раскрепоститься ученику на уроке, преодолеть трудности общения с учителем и товарищами.

Непосредственный выход учащихся на проектный уровень. Его первая задача познакомить учащихся с общими требованиями к подготовке, выполнению и оформлению учебной работы: сообщения, исследования, проекта. Информация доводится до учащихся в форме лекции или консультации. Даю теоретические знания, знакомлю с рекомендациями, привожу образцы примеров, соответствующих данному уровню самостоятельности. Вторая задача этого этапа - упражнение и тренировка, создание небольших локальных проектов. Чаще всего это домашние задания в нестандартной  интерпретации: сообщение по теме с использованием дополнительной литературы в виде презентации, поиск информации по заданной теме в дополнительной литературе, обработка данной информации и её представление в виде таблиц, диаграмм, тезисов.

Проектно - исследовательская работа на уроках математики

Темы: 7-й класс

  1. «Великие Математики Древнего мира».

Цель: знакомство с великими математиками Древнего Мира.

2) «Число». Учащиеся изучают популярную литературу и готовят сообщение по темам: «История счета», «Римская нумерация», «Магические числа», другие.

3) «Волшебный прямоугольный треугольник».

Цель: знакомство со свойствами прямоугольного треугольника, с признаками равенства.

Темы: 9 – й класс

  1.  «Зачем нужна математика». Проект представляет мини-исследования по социальным вопросам с использованием опросов, анкет, построением диаграмм при оформлении результатов.

Цель: знакомство с методами исследований, способами оформления результатов.

  1. «Тайны прогрессии» Проект представляет исследования арифметической и геометрической прогрессий.

  2. «Начальные сведения из стереометрии»

Цель: знакомство с понятием многогранники, с видами, свойствами.

Изготовление наглядного материала.

  1. «Функция». Изучение и обобщение свойств функций (без применения производной).

  2. «Модуль». Повторение и обобщение модуля числа, функции. Решение уравнений, неравенств с модулем.

 Заключительный. Цель этапа – анализ деятельности, мониторинг результатов. На этом этапе выявляем, что дает проектно-исследовательская деятельность ученику и учителю.

Выводы.

Проектно-исследовательская деятельность, с точки зрения учащихся, – это возможность самостоятельно создать интеллектуальный продукт, максимально используя свои возможности; это - деятельность, позволяющая проявить себя, попробовать свои силы, приложить свои знания, принести пользу и публично показать результат, самоутвердиться.

Проектно-исследовательская деятельность, органично сочетаясь с другими технологиями и методиками, привела к определенным результатам.

Получили развитие общие умения учащихся, а главное – проектно-исследовательские умения. Это: постановка задач, выдвижение гипотез, выбор методов решения, построение обобщений и выводов, анализ результата.

Учащиеся получили навыки работы в текстовом редакторе, редакторе формул, в построении чертежей геометрических фигур с помощью Word и Paint. Познакомились с математическими программами на электронных носителях.

Учащиеся получили представление об общих требованиях к подготовке, проведению и оформлению учебной работы. Научились оформлять проекты в виде презентаций в устной форме и на электронных носителях.

Проектно-исследовательская деятельность позволяет выявить творческие способности учащихся, их деловые качества.

Использованная литература:

1.      Безрукова В.С. Директору об исследовательской деятельности школы/Библиотека журнала «Директор школы»– М.: Сентябрь, 2002. №2.

2.      Дереклеева Н.И. Научно-исследовательская работа в школе. – М.: Вербум – М, 2001.

3.      Журнал «Математика в школе»: 2000 №5,6,9; 2001 №7; 2003 № 2-3; 2004 №