Так как прямой ход решения приводил к недопустимо громоздким расчетам, решение задачи было приостановлено.
- Подумайте, как проще решить эту систему.
Полминуты тишины, и ни единого предложения. Ничего удивительного: этот вариант решения встретился впервые, и теоретические знания, не подкрепленные практическими действиями, безмолвствовали.
- Пусть эта запись останется на доске, а мы решим пока что другую задачу.
Прошло не более трех минут, и - рука!
- Пять третьих - это удвоенный третий член.
- Почему?
- А потому что любой удвоенный член арифметической прогрессии равен сумме равно отстоящих от нее членов. Первый и пятый члены находятся на одинаковом расстоянии от третьего.
- Все! Задача решена. И снова вы убедились, как важно уметь отключиться. Как важно возвратиться к решению задачи после некоторой, пусть даже чем-то заполненной паузы. Вам только кажется, что вы оставили задачу. На деле же сознание продолжает над ней работать. Работать без насилия, без обязательного требования - выдать решение. Вот так и дома, вот так и всегда: снова и снова возвращайтесь мыслью к трудной задаче. Возвращайтесь в течение дня, в течение недели, в течение месяца. Условие задачи должно проясниться до мельчайших деталей, и мозг выдаст вам решение в награду за вашу настойчивость. Вспомните, как решил задачу всесоюзной математической
олимпиады в прошлом году Вова Бустеряков. Точно так же. Первое прочтение условия. Отключение на другую задачу. Второе включение, и - устные выкладки от начала до конца.
Только теперь стала понятна целевая установка приведенного примера с урока. Как и всему прочему, ребят нужно учить работать. Работать грамотно и продуктивно. Одними только требованиями и увещеваниями ничего, кроме отвращения к математике, добиться невозможно.
Озарение капризно и избирательно. Оно не может прийти к каждому, кто только однажды прикоснулся к проблеме. Озарение - это награда за целеустремленность, за верность идее, за прилежание, за веру в успех. Сколько раз случалось даже такое, когда ученики приносили в класс решение задачи, над которой думали несколько месяцев. Счастье такого достижения невозможно сравнить ни с чем. Дело-то в конечном счете не в самой задаче, а в самоутверждении, в растущей вере в свои возможности и в глубинном понимании путей движения к результату, в трудовом настрое на его достижение. И все это относится не только к решению задач по физике или математике, а к творчеству вообще. Так же, мучительно выверяя каждую интонацию, упорно шлифуя каждое ударение и каждый слог, пишут стихи. В творческих поисках
легких побед не бывает! Если это будет осознано учеником и станет направляющим фактором в его учебных буднях, то можно с уверенностью сказать, что зерна труда учителя, попав в благодатную почву, дадут добрые всходы, а потом и прекрасные плоды. Памятуя об этом, каждый трудный успех ученика необходимо делать достоянием всего класса. Уметь разделить искренне и полно радость другого - редкое качество человека. Говорят, друзья познаются в беде, но еще более полно они познаются в счастье. Ободряющая улыбка, доброе, искреннее слово, сердечно высказанное чувство - как много они значат для растущего человека
Лучшее - враг хорошего
Первое собрание с родителями учеников IV экспериментального класса проводится в последних числах августа. Цель проста: еще до начала учебного года папы и мамы должны подготовить некоторые пособия для первого урока. Одно из таких пособий - плашки с номерами заданий на первые два месяца работы. Эти плашки нужно слегка увеличить и наклеить на плотный лист картона. На плашках отражены 1500 упражнений из стабильного учебника по математике для IV класса, но для решения в классе и самостоятельной работы дома выделено немногим более 600. Остальные помечены точками, косыми крестиками или заштрихованными квадратиками. Вот образец первой плашки (с. 293).
Вначале представлялось, что система пометок существенного значения не имеет: велика ли разница - отмечен квадратик точкой или косым крестиком? Оказалось, велика. Плоскость плашки, испещренная точками и крестиками, не становилась по мере работы с ней чем-то завершенным - слишком много на ней было пустых мест и прогалин. Работа с такими плашками значительно снижала трудовую активность младших школьников: на 20-30% сокращалось общее количество самостоятельно решаемых упражнений. Иное дело - плашка с закрашенными квадратиками, представленная на рисунке. Пустые клетки - поле предстоящей деятельности ученика. Появляется чисто игровой интерес - закрасить их все (отмечается каждая решенная задача). И чем меньше остается пустых клеточек, тем активнее работает ученик. Он знает, что впереди его ждет новая плашка, а предстоящая встреча с новым в высшей степени притягательна для ребят десятилетнего возраста.
Если судить по плашке, из 500 номеров учебника школьнику необходимо решить всего 211. А как же остальные? Сначала произведем простой расчет. 500 номеров - это не 500 заданий. В No 15-4 примера, в No 32-5 упражнений, в No 33-2 задачи, 500 номеров - это более 1000 разнообразных упражнений, а всего в учебнике IV класса их около 4000.
Обычная норма для работы дома в традиционных условиях - 1 задача и 1 пример. Всего в учебном году в IV классе 210 уроков, а это значит, что ученик, не пропустивший в течение года ни одного урока, может дома самостоятельно решить около 600 задач и примеров. Напомним, что пустые клеточки на плашке соответствуют вдвое большему числу упражнений. Заштрихованные клеточки - это поле деятельности учителя для подбора упражнений, выполняемых на уроках коллективно и индивидуально. Значительное число упражнений, отмеченных заштрихованными клеточками, представляют собой тренировочные, необходимость в которых при систематической работе каждого ученика просто отпадает и которые в дальнейшем, по мере совершенствования учебного процесса, не будут включаться в стабильные сборники задач. Учебники станут несколько тоньше, но более насыщенными.
Действенность таких плашек без труда может проверить на практике не только любой учитель, но и любой родитель. Дети охотно включаются в игру и стремятся решать задачи каждую свободную минуту. Без всяких напоминаний и принуждений. Спустя некоторое время на смену игровому приходит познавательный интерес, а вместе с ним - успехи в учении и совершенно закономерное чувство достоинства и самоуважения. Задача учителей и родителей в этом процессе только одна: обеспечить систематическую проверку выполняемых упражнений. Дома это делают родители, в школе - консультанты-старшеклассники.
Несколько слов о двух точках на первой плашке. Они соответствуют задачам в учебнике No 301 и 347. Их решать вовсе не нужно. Никогда. Приведем полное условие первой из них.
"Пошел дождь. Под водосточную трубу поставили пустую бочку. В нее вливалось каждую минуту 8 л воды. Через щель в бочке вытекало 3 л воды в минуту. Сколько литров воды будет в бочке через 1 мин, 2 мин, 3 мин, 4 мин и т. д. до 10 мин?"
На научную нелепость таких задач в свое время указывал еще известный советский писатель Я. И. Перельман, но, увы, ошибка столь живуча, что о ней приходится говорить снова спустя полвека. Дело в том, что по мере наполнения бочки давление воды на уровне щели будет возрастать, а количество выливающейся жидкости - непрерывно увеличиваться. Может случиться даже так, что через некоторое время количество выливающейся жидкости сравняется с количеством поступающей и подъем уровня жидкости в бочке просто прекратится. С такого рода задачами, когда речь идет о переменных величинах, нужно быть чрезвычайно осторожным (взлет ракеты при сокращающейся массе горючего, сползание каната со стола под действием собственной силы тяжести - таких примеров достаточно много).
Любите книгу - источник знаний
Да, книга - источник знаний. Да, книгу нужно любить. Но нельзя из книги делать культ. Книги бывают разные - хорошие и плохие, полезные и вредные, и несчастны те дети, которым никто и никогда не показывал совершенно очевидных ошибок даже в самых
хороших книгах, не говоря уже о школьных учебниках. "Будьте внимательны,- говорим мы детям.- Книги пишут обычные, такие же, как и мы с вами, люди. Им свойственно заблуждаться, ошибаться, и хотя над каждой книгой работает множество людей - авторы, рецензенты, редакторы, корректоры, в книгах все же довольно часто встречаются ошибки и опечатки".
Школьники, наученные критически читать, часто находят оригинальные доказательства теорем (случается, даже изящнее тех, которые даны в стабильных учебниках), обнаруживают ошибки в предложенных авторами ответах на различного рода примеры и задачи. Ученик, для которого книга - идол, может бесплодно терять многие часы в поисках решения, подводя его к ответу в книге, хотя в результате ошибки автора этого ответа просто не существует. Ученик же, уверенный в своей правоте, спокойно и строго докажет верность выбранного им пути решения и полученного ответа. Вспоминается случай, когда ученица VIII экспериментального класса Таня Аминина не только доказала ошибочность ответа в сборнике задач, но и, перебрав огромное число вариантов, нашла злополучную цифру, которую нужно было заменить, чтобы получить ответ автора. Девочку к этому никто не понуждал: эка невидаль, опечатка, мало ли их случается в новых изданиях? Но нужно было видеть десятки исписанных листов, чтобы понять и оценить титаническую работу, проведенную в поисках условия примера, соответствующего ответу. Вдумаемся: ошибочной могла быть любая из полусотни цифр, любой из знаков действий, любая скобка, любая черта дроби. И не одна... Добавим к этому, что до прихода в экспериментальный класс Таня была рядовой троечницей. Сейчас она научный сотрудник высшего учебного заведения. Этот факт отражает не только качество учебного труда, но и уровень расчетных навыков учеников экспериментальных классов, который может быть достигнут всего только за один учебный год, независимо от того, ведется работа с учащимися IV или VIII класса.
Весной 1986 г. была проведена необычная сопоставительная контрольная между учащимися IV экспериментального класса и выпускниками очень сильного (11 медалистов) X класса по решению конкурсных примеров на все действия с обыкновенными, десятичными и периодическими дробями. Итог: десятиклассники решили 30 примеров (количество писавших работу было одинаковым), четвероклассники - 34 примера. И это при условии, что 150 из заштрихованных на плашке квадратиков (т. е. на выделенных для самостоятельного выполнения заданий) - примеры.
Все дело в подходе к самим примерам. Нет никакой необходимости расходовать драгоценное время уроков на выработку вычислительных навыков: они приходят сами по себе в процессе решения разнообразных задач и примеров. Действия же с дробными числами во всех деталях аналогичны характеру работы с целыми числами. Стало быть, можно не тратить время на примерах с целыми числами, а как можно раньше, уже во второй четверти IV класса, переходить ко всем действиям с дробями, т. е. к тому учебному материалу, который в основном перенесен на пятый год обучения. В этом скрыт одни из самых значительных резервов ускоренного (и более основательного!) прохождения программы по математике.
Рассмотрев попутно первые рекомендации по решению примеров, возвратимся к основной мысли этого короткого раздела: каждую обнаруженную в учебнике ошибку надо непременно обсуждать с ребятами. Это развивает у них вдумчивое отношение к тексту, способствует их самоутверждению и независимости в лучшем смысле этих слов.
Наташины окошки
Если кому-то из читателей покажется, что после первого родительского собрания все папы и мамы сделают своим детям красивые и прочные плашки, уже одним только своим внешним видом зовущие к решению задач, то это будет непростительной наивностью. Чего только не принесут ребята к первому уроку! И кривые картонки, и вырванные из тетради листы в клеточку с небрежно нарисованными на них сетками плашек, и тяжелые фанерные пластины... Некоторые вообще ничего не принесут. И чему, собственно, удивляться: родители - выпускники вчерашней школы, многие из них приучены работать спустя рукава или совсем не работать. Начинается индивидуальное обучение пап и мам. По мановению волшебной палочки ничего не происходит. Родители врастают в работу на новой методической основе значительно труднее, чем их дети. Сказывается труднопреодолимый разрыв между семьей и школой. Постепенно все образуется, возникнет взаимопонимание, но это будет потом, а пока тетрадные листочки теряются, картонки лохматятся и приходят в совершенную негодность.
Саша Пономаренко терял свои плашки в течение учебного года не менее четырех раз. Потом они вдруг находились - под школьными вешалками, за радиаторами, в темных чуланах. Оставалось загадкой, каким образом они туда попадали. Сам Саша смотрел на всех кристально чистыми глазами и искренне недоумевал по поводу каждого исчезновения очередной плашки. Папа - врач, человек чрезвычайно занятой, удивлялся вместе с сыном, и каждую новую плашку делал все более массивной.
Иное дело - Наташа Нестерцова. Ей плашку сделали маленькую, аккуратную и черную, как воронье крыло: все заштрихованные квадратики залили сплошным слоем туши. Циферки на плашке - чуть побольше маковых зернышек, и оттого Наташа то строчку перепутает, то не по тому столбику пальцем поведет. Ребята шли вперед, их строчки в ведомости открытого учета решенных задач заполнялись все новыми квадратиками, а Наташа топталась на месте, теряя веру в свой возможный успех. Причин же тому было две. Первая - неудачная плашка, вторая - Наташина невнимательность. Да и откуда ей было быть, внимательности, если за весь предыдущий учебный год в III классе Наташа получила около 50 троек, столько же двоек и несколько четверок за ведение тетради - писала девочка аккуратно и красиво. Вот и весь багаж Наташи, с которым она пришла в экспериментальный класс. На протяжении первых трех месяцев она сидела в классе безмолвным холмиком с большими, наполненными испугом глазами. Ни малейшего движения и никакой попытки поднять руку, а если называлась ее фамилия, то холмик вставал и снова-таки беззвучно хлопал длиннющими ресницами. Правда, иногда Наташа открывала рот, но только для того, чтобы протяжно и горестно вздохнуть.
Пустые клеточки в плашках в первые недели (так было легче вести учет
решенных задач) закрашивались яркими фломастерами. У других ребят на фоне
бледных заштрихованных пастой от шариковых ручек квадратиков все это
смотрелось цветастой, но ничем не примечательной картиной. А у Наташи среди
сплошной черноты...
- Посмотри, как интересно! Это у тебя на плашке ночь, большой черный дом, и в его окошках - новогодние огни. Ты решаешь задачу, и сразу же у кого-то в квартире радость: зажглась новогодняя елка.
Образность сравнения была столь неожиданной и точной, что стоявшие рядом ребята потянулись к Наташиной плашке, а девочка, слегка зардевшись, улыбалась счастливо и благодарно.
На следующий день она принесла в тетради вдвое больше задач, чем делала это обычно. Через две недели в школу пришел Наташин папа, который, несмотря на запрет, помогал дочери решать задачи, и удивленно сообщил:
- Категорически отказалась от помощи. Сидит за математикой, как не сидела никогда. Ошибается, зачеркивает, исписывает лист за листом и почти всегда приходит к правильному ответу. Что произошло?
Откуда ему было знать, что у Наташи отзывчивое и доброе сердце, что ей очень хочется, пусть даже понарошку, приносить людям счастье - зажигать в их квартирах новогодние елки. Но ведь зажечь огоньки в одном только домике - это значит решить более 200 упражнений. Это значит, что бесхитростная игра неприметно, исподволь пробуждает интерес к математике, приучает к умственному напряжению, к систематическому самостоятельному поиску, укрепляет чувство самоуважения. С Наташей эта метаморфоза произошла к концу первого учебного года. Решительно и смело она предлагала свои ответы на вопросы, а выходя к доске, каждый раз возвращалась на место с высоко поднятой головой: задачи, ранее побеждавшие ее, теперь безропотно сдавались перед ней. Но что - Наташа! Нужно было видеть, с каким воодушевлением смотрели на нее те, кто еще вчера ходил в середнячках и для кого не далее как вчера она была молчаливым холмиком с большими глазами. К концу IV
класса, упустив время в начале года, Наташа не успела решить все задачи по V классу, но в новом учебному году, работая по учебникам алгебры и геометрии для VI класса, она продолжала ежедневно приносить задачи по книге для V класса, пока не закончила ее полностью. Обязательность - вот главное качество, которое приобрела Наташа всего за один только учебный год. Разумеется, в Наташином преображении главную роль сыграла не столько удачно найденная игра в задачи-окошки, сколько благожелательная поддержка старшими усилий ребенка, ежедневная проверка решенных задач, умная помощь в случаях затруднений, умение заметить и разделить радость победы. Но вот решены первые 200 задач. Рисовать новый домик-плашку? Не нужно. Лучше сделать
плашку-аппликацию, на которой каждая клеточка заклеивается квадратиком из цветной бумаги. Цвета подбираются таким образом, чтобы после завершения работы на плоскости листа образовалась какая-либо фраза. Вот такая, к примеру, плашка, заключенная в рамку и взятая под стекло, висит над столом у одного из наших учеников:
Размер ее, правда, несколько больше - около 2000 клеточек. Столько задач решил Саша и сделал из цветных квадратиков красивую аппликацию. Поучительная самоделка.
Но есть еще один вариант: располагать номера решенных задач таким образом, чтобы своими контурами квадратики создавали какой-либо рисунок. Основой таких рисунков могут служить образцы для вышивания крестиком. Перенести контур на картон или плотную бумагу лучше конечно взрослым, а вот аппликации будут выполнять сами ребята. В минуты отдыха. Каждый учитель и каждый родитель может найти свой вариант оформления плашек. Например, учитель математики из Запорожья сделал плашки в форме мотыльков (вот уж где раздолье для цвета!), а из г. Куйбышева - в виде парусника над гребнями волн, так что была бы фантазия. Главное же - раскрыть перед ребенком увлекательную перспективу, наметить конкретную цель и всеми доступными средствами помочь ему достичь ее.
Читателю, разумеется, уже понятно, что главное действие плашек - психологическое: они увлекают цветом, формой, открытым простором для фантазии, игровой ситуацией. Так, одна из плашек имеет форму песочных часов. Психологический смысл ее состоит в том, что ученик, приступая к решению задач, работает сначала значительно активнее. Это обусловливается, с одной стороны, новизной, а с другой - легкостью первых упражнений. Затем порыв несколько угасает (эффект привыкания!), и в это время сокращается количество задач в строчках - воронка идет на убыль, в каждой строке всего по 3 задачи и даже по одной. После этого интерес к работе, поддержанный укрепившимся умением оперировать теоретическими знаниями и содержанием задач, снова возрастает: следуют длинные строчки. Разъяснив смысл такого оформления плашки, можно помочь ребятам осознать особенности их учебной деятельности, а это уже первый шаг к ее самоуправлению и саморегуляции.
Тепло учительских рук
Учились в школе юноша и девушка. Красивые. Хорошие. И была между ними большая любовь, да только ненадолго хватило той любви. Но остался от нее маленький Вовка. А с Вовкой - бабушка. Больше никого. Жил Вовка тихо и неприметно. Учился кое-как, а если точнее, то вообще не учился. Сидел на уроках и смотрел в окно. В IV класс его перевели вместе со всеми - тогда переводили всех. Обычно такие дети любят мастерить или читать. Вовка был исключением: читал по слогам, с трудом выговаривая отдельные слова. Больше двух месяцев ушло на то, чтобы он повернулся лицом к доске и хоть как-нибудь заинтересовался происходящим на уроке. Будь в классе такой один только Вовка - куда ни шло, можно держать его в зоне повышенного внимания. Но в том-то и беда, что таким, как он, был каждый третий ученик. Работать с активной частью учащихся, обеспечивать их высококалорийной научной пищей и одновременно ни на секунду не выпускать из виду недобрый десяток то и дело расползающихся в разные стороны Вовкиных товарищей по несчастью - каторжный труд. Нет, они не бродят по классу, не разговаривают, не мешают, они... просто исчезают. Вот только что был, смотрел, слушал, и вот - его нет: вместо человека за партой сидит его телесная оболочка. В это время можно повторить подряд 5-6 раз одну и ту же фразу (это один из побуждающих методических приемов) или легким движением руки установить в классе абсолютную тишину (еще более сильный методический прием), Вовка ни на что не отреагирует ни единым мускулом лица: он отрешен, отключен, его нет. Сколь велик в этот момент соблазн предать его осмеянию, потешить других, но - нельзя! Ни в коем случае. В таком поведении нет вины ученика. На тысячах уроков выработался стереотип самозащиты, и он стал рабом этого стереотипа. Тут нужен иной способ, чтобы вернуть человека в класс.
- Вот видишь, как легко потеряться на уроке. Это со всяким случается. Урок – это незнакомая тропинка в лесу. Чуть зазевался, и все уже ушли. Не забывай об этом и, пожалуйста, не теряйся.
Вот и все. Урок тем и хорош, что Вове говоришь, а Ваня с Леной слушают. И понимают, что это не про них, но для них. Иными могут быть слова, жесты, тональность, мимика, но неизменным должно оставаться внимание к состоянию учеников. Никому нельзя позволить ни на минуту исчезнуть во время урока. Работа эта невероятно сложная, требующая мобилизации всех внутренних ресурсов учителя, но ни заменить ее, ни восполнить чем-либо иным невозможно. Особенно трудны первые 2-3 месяца общения с новым классом. Потом (а это иногда до полугода) ребята преображаются, но происходит это очень медленно и у каждого по-разному. Сначала отключения становятся менее продолжительными, затем - более редкими и наконец совсем исчезают.
Вниманию учащихся на уроках в экспериментальных классах всегда поражались десятки тысяч посетителей, но кто из них могдогадаться, какой титанический труд предшествует этому результату. Одни приезжали раньше, когда внимания еще не было, другие - на промежуточном этапе, когда все бывает, как у всех, но большинство видят уже достигнутое, и получается, что первые и вторые не знают, что будет дальше, а последние не понимают, откуда что пришло.
Сейчас, когда Донецкая лаборатория перешла на циклические ежегодные семинары с нарастающим уровнем сложности, учителя получили возможность видеть процесс в развитии. Но внимание само по себе еще не обеспечивает успех учения. Это всего только обязательное условие. Достигнув его, можно идти вглубь. Нацеленными и не очень трудными вопросами вовлекаются в работу вчерашние тугодумы и молчуны. Добрыми словами отмечается каждый успех и даже каждая попытка заговорить. Пусть робкая и не совсем удачная. Не беда! Важно, чтобы ученик чувствовал, что учитель заметил его старание, сдвиг к лучшему, верит в него. И еще важно, чтобы каждое слово или действие учителя, на кого бы они ни были нацелены в каждой конкретной ситуации, работали масштабно - на весь класс.
У доски Андрей Волченский, один из лучших учеников класса. Решение задачи не представляет для него никакой трудности, и он торопится выложить основные мысли, опуская малосущественные, с его точки зрения, детали. Этого ни в коем случае оставить без внимания нельзя. Ход решения должен быть понятен не только учителю, но и всем ребятам. Весь рассказ от первого до последнего слова и действия должен быть доказательным, последовательным и детализированным. Не уследивший за торопливой скороговоркой Андрея одноклассник тотчас же выпадет из общей работы и замкнется в себе. От уже понятого, но еще раз повторенного не пострадал никто, а вот от непонятого и неповторенного страдают миллионы школьников. Довести мысль отвечающего ученика до абсолютного понимания ее каждым - непреложная заповедь учителя.
Пришло время, когда пробудившийся от многолетней дремоты Вовка включился в общий рабочий ритм. Нет, он не все еще мог решить и далеко не все понимал до конца, но ему уже стало интересно. Примеры, оказывается, можно решать вместе со всеми, они совсем не трудные, и задачи тоже иногда поддаются. Вот только никак невозможно наперед угадать, какая из них получится. Одно стал замечать Вовка: на каждом уроке попадается такая задача, которую он может решить сам. Может. Сам. И теперь, когда на уроке начинают читать условие новой задачи, он напрягается до предела: может быть,
это она?..
Вовкины выводы не случайны. Если на каждом уроке наращивать сложность задач, то это неизбежно приведет к новым и новым потерям: один за другим будут отпадать слабые, безвольные, нерешительные и неуверенные, и учитель однажды вдруг увидит, что работает только с несколькими учащимися, выдержавшими непомерно высокий темп. Остальные погасли, сникли, увяли. Исходной на каждом уроке должна стать общедоступная задача. Иными словами, в план работы необходимо включать хотя бы одно-два упражнения, которые совершенно самостоятельно может решить даже самый слабый ученик. Все другие могут быть и более и даже очень сложные - они для тех, кто впереди, но ни на секунду нельзя забывать, что в классе Вовка и такие, как он. Уровень трудности общедоступных задач, и это естественно, будет увеличиваться от
урока к уроку, равно как и сложность задач, рассчитанных на одаренных ребят. Но "подтягивание тыла", если можно так выразиться, обычно идет значительно быстрее, чем продвижение "фронта атаки".
Причина проста: отставание абсолютного большинства ребят объясняется не их генетической неполноценностью, а педагогической запущенностью. Потенциально даже самые отстающие ученики мало чем отличаются от преуспевающих. Разрывы в результатах чаще всего определяются внешними, а не внутренними обстоятельствами, и, как только вчера еще безнадежно отстававший попадает в благоприятные педагогические условия, он в считанные месяцы поднимается до уровня хороших, а по прошествии одного-двух лет - и до уровня самых лучших ребят. И вот тому последний пример.
2 сентября 1988 г. у семиклассников была проведена контрольная по 10-й главе (геометрия) сборника М. И. Сканави. Иными словами, вчерашние шестиклассники сдавали конкурсный экзамен по геометрии в высшее учебное заведение. О предстоящей контрольной ни в течение прошлого учебного года, ни весной, ни 1 сентября не было сказано ни единого слова. Работа-экспромт. Работа на выживаемость знаний. По количеству решаемых задач ограничений не было - кто сколько сможет, кто сколько успеет за 45 минут. Результат: больше всех задач решил один из лучших учеников класса - Вова Брага. Пять конкурсных задач решил он за 45 минут. По 4 задачи решили Андрей Волченский, Аня Максимец (помнит ее читатель?) и Наташа Чудненко. Две девочки, когда-то едва-едва успевавшие по математике в начальной школе, стали теперь звездами первой величины! Но, может быть, снизили свои знания Волченский, Брага, Бустеряков и Серых, позволив тем самым приблизиться Ане и Наташе? Чтобы снять подобные сомнения, та же самая контрольная была проведена 6 сентября в X классе другой школы. Писали ее 34 ученика. Результат - ноль! Никто, ни один ученик не смог решить ни одной задачи! Если же быть совершенно точным, то одна девочка составила уравнение, но решить его не смогла. Так на какой же высоте оказались семиклассники в сравнении с десятиклассниками? Контрольную в экспериментальном классе выполняли 25 человек, и решили они все вместе 64 задачи. Какое соотношение отразит различие в подготовке? А впереди у ребят еще 4 года учебы в школе...
Поднимаются ученики на новые учебные высоты по-разному. У одних это происходит постепенно, без видимых резких взлетов, у других - скачкообразно. У Наташи такой скачок произошел после описанной ранее истории с домиком-плашкой, а у Вовки...
Условие задачи было прочитано спокойно и неторопливо - для всех. Желающих выйти к доске было много, а Вовка только как-то неестественно вытянул шею и чуть заметно пошевелил пальцами правой руки, никак не решаясь поднять ее.
- Так-так-так... Бустеряков - вижу, Брага - вижу, Зуенко - вижу, а вот Вова только пальцами шевелит, робеет. Пожалуйста, попробуй.
Белокурый мальчуган медленно пошел к доске, переступил с ноги на ногу и в очевидной растерянности уставился на доску, где было записано условие задачи. Пять секунд. Десять секунд. Сзади - нарастающее нетерпение класса, впереди - замерший в ожидании учитель. Еще несколько секунд, и Вовка или расплачется, или безнадежно выключит и волю и надежду решить задачу. Тогда - провал. На долгие дни и недели. И в эту роковую минуту учитель обнял ученика и закрыл его от всех. Вовка сначала чуть вздрогнул и сразу же затих в тепле добрых рук. В классе - ни звука. Прошло еще несколько секунд, и Вовка, слегка приподняв свой маленький нос, чуть слышно сказал первый вопрос задачи, действие и ответ. Теперь важно громко, утвердительно и воодушевляющее повторить каждое Вовкино слово, побуждая всех порадоваться за него, преодолевшего свою робость. Все последующие вопросы и действия к ним Вовка называл уже так уверенно и спокойно, что каждое его слово было слышно во всех углах класса.
- Высший балл! Отлично!
Сияющий Вовка сел на место, а ребята все еще не могли успокоиться: за долгие годы они впервые услышали от своего товарища полное, последовательное и безошибочно правильное решение сложной задачи.
В конце учебного года Вова Большаков вместе со всеми ребятами успешно сдал экзамены по математике за курс IV и V классов одновременно, и мама увезла его в далекий Мурманск. Как сложится его дальнейшая судьба? Смог ли он за один учебный год обрести надежную точку опоры - веру в себя?..
Не искушенному в тонкостях педагогического процесса читателю может показаться, что успех достигается слишком просто: в одном случае - домик, в другом - тепло рук, в третьем... Иными словами, стоит только отыскать один какой-то нестандартный психологически верный методический прием, и тут же из вчерашнего лодыря и тугодума, как по мановению волшебной палочки, образуется трудолюбивый, умный и обаятельно-дисциплинированный ученик. Но опытный, думающий учитель, надеемся, поймет, что стоит за этими реальными историями с подлинными фамилиями и именами и какой ценой обеспечивается подобный эффект. На это понимание только и остается рассчитывать, рассказывая, может быть, о главном результате экспериментальной методики - обретении маленьким человеком веры в себя, желания учиться.
Это нужно знать экспериментатору
Контрольные классы ни в коем случае нельзя назначать в той же школе, в которой
проводится эксперимент. Причина очевидна: результаты всех и всяких сопоставлений непременно становятся известными сначала ученикам, а потом и родителям. И начинается брожение умов. Осложняются отношения между учителями - кому это хочется ходить в последних? Можно только представить себе остроту конфликта, когда ученики IV класса выполняют работу лучше, чем десятиклассники. А ведь это было: соотношение 34 : 30.
Нуждается в совершенствовании и система оценивания результатов сопоставительных контрольных работ. Вот простой вариант: в экспериментальном классе 7 учащихся получили заслуженные, соответствующие всем требованиям и нормам оценивания знаний удовлетворительные оценки. В контрольном же классе 10 учеников с работой не справились и получили двойки. В сущности, двойка свидетельствует обычно о полном незнании, и потому призрачное различив между двойкой и тройкой давно уже никем не фиксируется. Иными словами, 10 учеников контрольного класса не смогли решить абсолютно ничего. В итоговой же ведомости результатов сопоставительных работ учащиеся экспериментального класса получат 21 балл (3×7), а контрольному классу за совершенное незнание материала десятью учениками начислят 20 баллов! Необъективность и несуразность картины очевидна. На таких условиях можно проводить сравнение знаний студентов выпускных курсов высших учебных заведений и дошкольников по разделам дифференциальной геометрии или интегрирования в частных производных: различие в числовой отчетности будет сравнительно небольшим.
Еще более нелепая картина складывается при оценке работы учителей русского языка, когда балл "1" выставляется за 10 и более ошибок. 10 ошибок - единица, 50 ошибок - та же единица. Как в этих условиях оценить работу учителя, сумевшего за период эксперимента уменьшить число ошибок, скажем, с 20 до 12? Как показать развитие и перспективность процесса? Выход один: оперировать не оценками, а общим количеством ошибок, допущенных учениками во время контрольных проверок - диктантов, сочинений, изложений и пр. Кстати сказать, несколько лет назад Донецкий областной отдел народного образования провел в одной из школ области диктанты, чтобы выявить не отчетную, а истинную грамотность учащихся. Естественно, что инспекторам было дано указание придерживаться строгих министерских норм словарного объема работ, времени их проведения, повторов при чтении текстов и правил произношения. Когда подсчитали общее количество всех допущенных учащимися ошибок, разделили их на количество учащихся, то получили общую итоговую единицу. Среднестатистическая оценка грамотности - 1. Если кто-то думает, что в Донецкой области работают словесники-неумехи, то пусть он пригласит этих "неумех" в свою школу для проведения таких же контрольных проверок.
Подытожим: общепринятая пятибалльная система оценивания знаний учащихся неприемлема для отражения итогов экспериментальной работы. Что же можно предложить взамен? Вариантов много. Один из них - троичная система оценивания письменных работ, при которой за правильно решенное упражнение или безупречный ответ на теоретический вопрос ученик получает высшую оценку 2 балла, за ответ с недочетами или небольшими ошибками - 1 балл и за неправильное решение или за неверный ответ - 0 баллов. Особо подчеркнем значимость последней оценки: отсутствие ответа или абсолютное незнание материала не может отражаться никаким числовым эквивалентом, кроме как ноль. В массовом эксперименте важен, прежде всего, общий итог работы группы, класса, учебной параллели или всей школы. Дифференцированный учет следует вести исходя из других критериев. Если же речь идет о действенности методики в целом, то на первом плане должен быть только итоговый уровень знаний и практических навыков всей группы, работавшей в новых условиях. В детализированном анализе результатов сопоставительных работ и контрольных проверок со всей определенностью отражаются преимущества и недостатки экспериментальной методики. Вот, например, как это может выглядеть.
1. Заметно повышаются результаты наиболее сильных учащихся и практически не меняются результаты основной массы учащихся.
Вывод: есть смысл перенести экспериментальные исследования в специализированные школы и поставить под особый контроль уровень загруженности учащихся во внеурочное время.
2. Наблюдается общий подъем результатов у подавляющего большинства учащихся.
Вывод: рамки эксперимента следует расширить.
3. Качественно улучшаются результаты работы наиболее слабых учащихся при сохранении высоких результатов у лучших ребят.
Вывод: провести контрольный эксперимент и рекомендовать проверку экспериментальных приемов в условиях работы вспомогательных школ.
4. При общем подъеме результатов учебной работы среди средних и слабых учащихся наибольших успехов достигают лучшие учащиеся.
Вывод: оптимальный вариант. Экспериментальную методику можно рекомендовать и распространять во всех школах данного типа.
Разумеется, этими четырьмя результатами и выводами не ограничиваются все возможные варианты, оценку которым могут дать только компетентные научные коллективы и довести до сведения всех учителей-экспериментаторов и научно-поисковых групп для утверждения статуса их исследовательской работы.
Не менее важен и подбор упражнений для сопоставительных контрольных работ. Знания учащихся необходимо проверять не по отдельным темам или разделам, а по всему изученному курсу. Более того, содержание сопоставительных контрольных работ должно быть таким же глубоким и всеохватным, какими являются материалы экзаменационных работ. Это, с одной стороны, позволит исключить и необъективность, и тенденциозность, и предвзятость при оценке возможности применяемой методики, а с другой – будет соответствовать особенностям и целям эксперимента. В подкрепление сказанного приведем варианты контрольной, предложенной весной 1986 г. ученикам экспериментального IV класса после освоения ими за один учебный год курсов математики IV и V классов. Речь идет о том самом классе, где каждый третий еще осенью 1985 г. читал по слогам.
I вариант.
От города до колхоза 24 км. Из города в колхоз выехал грузовик, который проходит 1 км за 2-мин. Через 15 мин из колхоза в город выехал велосипедист со скоростью вдвое меньшей скорости грузовика. Через сколько времени после своего выезда велосипедист встретит грузовик?
Пионерский отряд в первый день прошел 5/14; всего пути, во второй день 7/18 оставшегося пути, а в третий день остальные 22 км. Каков весь путь отряда?
Колхоз должен был засеять 840 га, но он перевыполнил план на 7,5 %. Другой колхоз засеял на 33 га больше, чем первый, но его план 900 га. На сколько процентов перевыполнил свой план второй колхоз?
На укладке газопровода три бригады заработали 1308 рублей. В первой бригаде было 5 человек, и работала она 9 дней, во второй бригаде было 6 человек, и работала она 8 дней, а в третьей бригаде было 4 человека, и работала она 50% того времени, которое работала вторая бригада. Сколько рублей получила каждая бригада в отдельности?
Найти периметр и площадь фигуры, размеры которой даны на чертеже в метрах.
II вариант.
После реконструкции завод увеличил выпуск продукции на 30%. Спустя некоторое время выпуск продукции увеличился еще на 10%, а после замены оборудования увеличился еще на 15%. На сколько процентов увеличился первоначальный выпуск продукции?
Сумма цифр двузначного числа равна 14. Если к этому числу прибавить 36, то получится новое число, записанное теми же цифрами, но в обратном порядке. Найти число.
У треугольника координаты вершин (-3; 1), (-1; 4) и (2; 3). Построить симметричный ему треугольник относительно оси, проходящей через точки с координатами (-8; -2) и (-7; -2).
Я задумал число, увеличил его в полтора раза, к произведению прибавил 4,4, полученную сумму разделил на 3 -, из полученного частного вычел 1,4 и получил 0,6. Найти задуманное число.
Ученик может выполнить работу за 16 ч, мастер - за 12 ч. Сначала в течение 4 ч работал ученик, затем 2 ч работал мастер. За сколько часов они выполнят оставшуюся работу, работая вместе?
(Специалистам-математикам нетрудно заметить, что в этих двух вариантах учащимся предложены задачи с цифровой вариацией из сборника М. И. Сканави - No13 005 и 13 030.)
III вариант.
В треугольнике один из углов на 20° больше второго, а третий на 44° меньше второго. Найти углы треугольника.
Сумма двух чисел 70. Если большее из этих чисел разделить на меньшее, то в частном получится 5, а в остатке 4. Найти эти числа.
Все билеты на футбольный матч проданы за 4 дня. В первый день было продано 20% всех билетов, во второй день 150% того, что в первый день, в третий день - 80% того количества билетов, которые были проданы в первые два дня вместе. А в четвертый день были проданы последние 2000 билетов. Сколько всего мест на стадионе?
На плане, выполненном в масштабе 1 : 1000, длина земельного участка 25 см, ширина 15 см. Найти площадь земельного участка.
Со станций А и Б, расстояние между которыми 26,6 км, вышли навстречу друг другу два поезда. До точки встречи поезд из А прошел на 1,4 км больше, чем поезд из Б. Найти скорость каждого поезда, если поезд из А был в пути 15 мин, а поезд из Б вышел на 1 мин раньше, чем поезд из А.
IV вариант.
Координаты вершин треугольника (-2; 4), (-1; -4) и (6; -2). Построить ему симметричный треугольник относительно центра симметрии, имеющего координаты (1; -3).
Магазин в первый день продал 3/8 всех поступивших в него для продажи кубиков Рубика. Во второй день - 2/3 того, что в первый день, а в третий день на 20 кубиков больше, чем во второй день, после чего продажа была закончена. Сколько кубиков получил магазин?
Один насос может выкачать воду из котлована за 16 ч, другой - за 75% этого времени. Первые 3 ч они выкачивали воду вместе, затем оставшуюся воду выкачал только первый насос. Сколько времени первый насос работал самостоятельно?
Для 5 лошадей и 57 коров необходимо на день 630 кг сена, а для 10 лошадей и 17 коров - 290 кг сена. Сколько сена нужно одной лошади и сколько одной корове?
Среднее арифметическое четырех последовательных нечетных чисел равно 2. Найти эти числа.
Содержание задач охватывает по крайней мере 10 разделов программы. Необычность контрольной и в объеме (5 задач), и в отсутствии примеров, и в абсолютной несхожести вариантов.
Еще одна особенность требует пояснений. Традиционные контрольные преследуют цель выяснить подготовку каждого ученика по отношению к должному уровню знаний и практических навыков. При этом не учитывается скорость выполнения заданий, тогда как отдельные учащиеся тратят на решение значительно меньше времени, чем основная масса детей. А ведь время решения - тоже показатель, отражающий уровень подготовки. Если же в контрольную работу включить заведомо избыточное число задач, то каждый ученик за одно и то же время решит неодинаковое количество задач, что позволит совершенно точно определить различия в уровне подготовки школьников. Примеры же характеризуют только технические навыки счета и преобразования, что никак не соотносится с логикой решения задач. Именно поэтому навыки решения примеров проверяются в отдельной работе.
На финише года
Для приведенной выше контрольной лучшим учащимся экспериментального IV класса потребовалось всего только от 25 до 30 минут, в то время как в контрольных классах до истечения 45-й минуты урока не была сдана ни одна работа.
Итоговые результаты оказались следующими: учащиеся VIII контрольного класса набрали в общей сложности 55 баллов, учащиеся VI контрольного класса - 32 балла, учащиеся V контрольного класса - 7 баллов, учащиеся IV экспериментального класса - 157 баллов. Это значит, что каждый из учащихся экспериментального IV класса решил в среднем столько задач, сколько все учащиеся V контрольного класса, вместе взятые! Иными словами, 4 лучших ученика IV класса решили столько задач, сколько все ученики VI класса, или, иначе, б лучших учеников IV класса решили столько задач, сколько все ученики VIII класса. Это ли не убедительное подтверждение давно уже сделанного вывода, что новые формы работы, обеспечивая достижение успеха всех учащихся, создают режим наибольшего благоприятствования для самых одаренных.
Приведенные полностью четыре варианта контрольной позволяют каждому учителю математики в течение 45 минут сопоставить результаты, полученные в экспериментальном и в контрольных классах, с возможностями своих собственных учеников. Сделать это в высшей степени интересно еще и потому, что задания близки по своему содержанию к тем требованиям, которые предъявлялись к учащимся пятых классов общеобразовательных школ... 30 лет назад, когда сложность контрольных была несравнимо выше предлагающихся сегодня.
А теперь о классе, в котором была начата работа на новой методической основе осенью (23 сентября - это существенно!) 1985 г. Более 60% учащихся на протяжении всего учебного года в III классе не имели ни одной хорошей четвертной оценки по математике, 40% ребят аттестовались во всех учебных четвертях по всем учебным предметам только тройками. Из 800 учителей начальных классов, проходивших курсы повышения квалификации при Донецком ИУУ за последние годы, ни один не смог припомнить в своей педагогической практике таких низких результатов к окончанию начальной школы. А ведь 800 учителей - это 12 000 лет педагогического стало. Иными словами, за 12 000 лет ни один из учителей не имел подобного класса. Какой же вывод следует сделать из этого разительного примера? Один: работу на повой методической основе можно начинать в любом классе, ибо более тяжелого по уровню подготовки, чем четвертый экспериментальный 1985г., встретить едва ли возможно.
Потерянное время
Откройте наугад любую тетрадь ученика любого класса. Под заголовком "Классная работа" вы обнаружите, как правило, максимум две задачи и один пример. Под заголовком "Домашняя работа" чаще всего будет одна задача и один пример. Конечно, в старших классах сплошь и рядом встречаются такие задачи, для решения каждой из которых иной раз и урока мало: чертежи, расчеты, письменные объяснения к решению,- 45 минут пролетают как одно мгновение. Но в начальных-то классах вполне возможно решать за один урок до 10 задач! Почему же не получается? В объяснительной записке к программам по математике есть одно вполне резонное требование: "...привить учащимся некоторые навыки в краткой записки условий задач".
Почему-то оно воспринято учителями как обязательное. И везде ребята пишут краткие условия ко всем без исключения задачам - когда нужно, и когда ненужно. Причем делают это по совершенно одинаковым шаблонам и стандартным схемам, вне зависимости от того, как видит задачу каждый отдельный ученик. В результате возникают парадоксы: ученик отлично представляет все этапы решения прочитанной им задачи, от первого до последнего действия, и может произвести устно все расчеты - вплоть до окончательного ответа, но его принуждают выполнять рутинную работу по письменному оформлению краткого условия задачи. В школе это делают учителя, дома - родители. Времени на это
уходит уйма. И что же получаем в итоге? Слабое владение вычислительными навыками, сдерживающее развитие логического мышления. А самое печальное - утрачивается живой интерес детей к поисковой деятельности, самообразованию, снижается познавательная активность.
Начало урока
На всем поле доски - краткие записи, разделенные небольшими промежутками и объединенные самыми разнообразными границами разделов и рамками. Свободное место оставлено только под первой задачей. Краткие записи - это условия задач, которые будут решаться на уроке. Все записи аккуратно и тщательно сделаны на перемене учителем. На чистой части доски выполняются расчеты при решении первой задачи, после чего и решение и само условие задачи будут стерты. На освободившемся пространстве начнется решение следующей задачи, по завершении которого запись снова стирают, и т. д. Доска становится все чище и чище.
Психологическая значимость этого приема весьма существенна: дети уже на первых минутах урока видят объем предстоящей работы, а затем - динамику движения коллективной мысли, наконец, приближающийся с последней задачей конец урока как венец дела. Появляются деловой азарт, заинтересованность в достижении цели, даже энтузиазм: класс увлекается новой перспективой точно так же, как и сам учитель. Общность цели рождает единомыслие и сотрудничество. Ранее скрытые от ребят замысел и план урока становятся зримыми, отраженными в конкретных задачах, которые во что бы то ни стало надо решить. Теперь уже и для самого нерадивого ученика время урока не тянется, а летит: успеем или не успеем? И о какой пассивности может идти речь, если учитель вдруг остановится, посмотрит с сожалением на часы и озабоченно скажет:
- М-да-с... Осталось всего 12 минут, а у нас еще три задачи, и притом самые интересные. Поднатужимся?
Педагогическим мастерством и психологической грамотностью учителя включается вдохновение ребят на любой минуте урока, будь она первая или сорок четвертая!
Краткие записи условий задач на доске лучше выполнять цветными мелками, однако не следует злоупотреблять такими сильно действующими раздражителями. Ярко нужно выделить одну-две задачи, на которых должно быть заострено внимание ребят. А заинтересовать можно еще и новизной, и сложностью, и нестандартностью, и перспективностью, да мало ли загадок обнаружится у каждой задачи!
Порядок расположения условий на доске совсем не обязательно должен соответствовать последовательности работы над ними - это и уныло и однообразно. За каждой записью скрыто неизведанное, и учебный процесс может захватить, как самая увлекательная игра или чтение детектива. Тем более что время от времени учитель обращается к классу с вопросом:
- А теперь какую решим?
Резервные задачи
Совершенно очевидно, что никакой педагогический опыт не поможет с абсолютной точностью предсказать весь ход урока и тем более предусмотреть возможную скорость решения задачи тем или иным учеником. Для учителя предстоящий урок - всегда уравнение с несколькими неизвестными, дорога в неведомое. Случается, не удается выполнить все запланированное или, наоборот, остаются минуты свободного времени. Конечно, если класс готовится к итоговому опросу по листам группового контроля или к плановой контрольной работе, то учителю просто необходимо сделать на уроке все, что предусмотрено его планом урока. В иных же случаях, особенно при решении задач, учитель должен включать в свой поурочный план одну-две "избыточные" задачи. Избыточные с точки зрения необходимости и достаточности. На деле же они помогут оградить урок от любых случайностей. Такие задачи называются резервными. И не беда, если какая-то из них не будет полностью выполнена на уроке, а решение окажется прерванным вместе со звонком на перемену. Будьте уверены, многие непременно попытаются одолеть начатую задачу самостоятельно. А спустя несколько дней можно предложить ее на уроке. И тогда она уже будет решена оперативно и четко, без каких-либо потерь.
Включить мысль
С этим можно соглашаться или не соглашаться, но начинать урок необходимо не с легкой разминки в форме полетного повторения, устного счета или решения шутливой задачи, а с напряжения мысли. Расслабляться легко. Напрягаться несравненно более трудно, и первые "расслабленные" минуты урока могут выбить из колеи делового ритма не только отдельных учащихся, но и весь класс на все 45 минут.
- Однозначное число,- начинается урок в V классе,- увеличили на 10 единиц. Если же полученное число увеличить на столько процентов, как в первый раз, то получится 72. Найти первоначальное число.
Пусть специалиста не смутит сложность задачи и даже выход ее решения на квадратное уравнение (это задача No 13 168 по сборнику М. И. Сканави) - подобные задания предусмотрены экспериментальной программой для учащихся IV класса. Речь о другом: что и как делает учитель в процессе осмысливания ребятами условия задачи? На каких моментах он концентрирует их внимание? Кому предоставляет право работать у доски? Какова допускаемая им степень содействия ученику при движении к цели? Вопросов не счесть, да и ответы на них не могут быть ни унифицированными, ни категоричными. Но есть единые педагогические закономерности, обеспечивающие и взаимное уважение ребят, выполняющих разные математические операции, и устойчивый интерес к самому процессу поиска. Согласимся, что изложить весь ход решения задачи-далеко не просто. В самом деле, 6 логических этапов должен преодолеть ученик, чтобы выйти на составление уравнения. Вот эти этапы.
Двумя этапами определяется первоначальное процентное увеличение неизвестного числа:
10 : x/100
На третьем этапе записывается формула нового числа: х + 10. Еще двумя этапами определяется приращение к образовавшемуся числу:
(x+10)/100 * (10 : x/10)
На шестом этапе записывается формула окончательного числа и составляется уравнение:
x + 10 + (x + 10) * 10/x = 72
Право же, авторский коллектив, работавший под руководством М. И. Сканави, со всей серьезностью отнесся к поставленной перед ним задаче - создать критерий математической подготовки выпускника средней школы. Средней... Но разве кто-нибудь мог предположить, что над этими задачами спустя всего несколько лет начнут работать ученики IV-V классов? Дети, которым только-только минуло 10 лет! Как же строить учебный процесс при работе с такими ребятами?
Начнем с того, что уже записанное условие дважды прочитывается учителем и при этом основной акцент делается на ключевой детали: "... на столько процентов, как в первый раз...". Неторопливо, четко выговаривая слова. Здесь должна сработать генеральная мысль.
В классе тишина. Спустя минуту - первая рука. Это один из лучших учеников - Вова Брага. За ним вторая - Андрей Бустеряков. Если сейчас вызвать для решения одного из них, то это будет повторяться до бесконечности на многих уроках - Брага, Бустеряков, Бустеряков, Брага... А 32 остальных? На что они обречены? На списывание с доски и медленное, но неуклонное угасание? Недопустимо. А как допустимо? Времени-то на уроке не столь уж много, да и Бустеряков с Брагой, подняв руки, призывно требуют к себе внимания. Требуют, вроде бы, по праву, да только право это ведет к ущемлению интересов товарищей. Здесь уже одним методическим приемом не обойтись, нужен надежно срабатывающий комплекс действий педагога.
Поднятую первым учеником руку видят далеко не все. А видеть должны все - в этом престиж первого.
- Так-так,- неторопливо оглядывая класс, произносит учитель,- Бустерякова вижу, Брагу вижу, Серых вижу, Волченского вижу, Моисееву вижу, Я-ку-ша вижу... Последняя фамилия растягивается, произносится тише и выжидательнее – кто следующий? Но секунды летят, а рук в классе нет. Отметим в этом месте два методических приема.
1. Называется фамилия ученика, поднявшего руку, и тем самым решается
проблема приоритета.
2. Растягивая последние слова и слоги, учитель как бы приглашает поднять руки всех тех, кто еще сомневается, не уверен в правильности своих рассуждений.
И вот еще одна рука! Это преодолела свою робость Леночка Исаева. Маленькая, кажется, из одной только застенчивости и вылепленная. Итогом трех лет ее работы в начальной школе стала безликая тройка. Почерк у Лены невероятно плохой, уровень грамотности - в области устойчивой единицы. В классе такие дети предпочитают молчать даже тогда, когда у них возникают какие-нибудь догадки или мысли. Для таких нужен особый добрый стимул, чтобы они безбоязненно предложили ответ, не стушевавшись перед авторитетом лучших учеников класса.
Итак, задачу пойдет решать Лена. Именно она должна стать точкой отсчета на этом уроке. Пусть она говорит тихо - не беда! Учитель каждое ее правильное слово громко и внятно повторит классу. Пусть она надолго задумывается. Пусть! Это только уверенный в себе ученик может без малейших сомнений последовательно и стройно изложить план решения конкурсной задачи для поступающих в высшие учебные заведения, будучи всего лишь пятиклассником. Пусть она ошибается. И это извинительно. Ведь на нее устремлены десятки глаз тех, кто сопереживает и готовит себя к такому же смелому шагу, который только что совершила вчерашняя троечница. Ее успех - это завтрашний взлет десятков подобных ей.
Реакция учителя на тихий голос, на раздумья, на неудачи - это тоже методические приемы, найденные долгим опытом.
- Ошиблась - не беда,- говорит во время одной из пауз учитель,- ошибка - это даже хорошо: не убежим далеко от тех, кто поотстал. Вся наша работа - неизбежные ошибки. Если бы вы не ошибались, то зачем тогда вам учитель?
"Значит,- спросит озадаченный читатель,- к доске всегда вызывается самый неуверенный в себе ученик? Тот, который последним поднял руку?"
Нет, не всегда. Но в большинстве случаев.
"Но не будет ли это действовать угнетающе на лучших учеников? Не потеряют ли они интерес к работе?"
Вопрос резонный. Если бы учитель ограничивался только тем, что на протяжении многих уроков называл лишь фамилии учеников, первыми поднимающих руки, то спад их интереса к делу произошел непременно. И даже более того: почувствовав бесконтрольность, они вполне могут начать поднимать руки даже тогда, когда не совсем уверены в правильности предполагаемого ими хода решения, а это уже недопустимый воспитательный сбой. Как должен вести себя ученик, выяснивший, что верного решения он найти не смог? К каким нравственным издержкам это приведет? А если решение было верным, но оригинальным и непохожим на то, которое прозвучало в классе? Здесь впору и обидеться, и замкнуться, и надолго замолчать...
И вот на одном из уроков, когда несколько первых учеников подняли руки, учитель снова называет их фамилии и говорит:
- Во время больших сражений главнокомандующий всегда держит в резерве несколько своих лучших воинских соединений. Они не вступают в бой, но уже одно только их присутствие наполняет сердца воинов уверенностью в победе. В этих условиях никогда не будет паники: резервные войска есть, значит, пока еще можно обойтись и без них. Значит, выстоим. Так было в сражении под Бородином в 1812 году. Так было в великой битве под Москвой в 1941 году. Ставка всегда должна располагать резервом главного командования. Уничтоженный резерв-это катастрофа. Так вот, Бустеряков, Брага, Волченский, Серых, Моисеева, Якуш, Талалаев, вы сейчас выполняете роль резерва главнокомандующего, и к вам мы обратимся только тогда, когда уже никто, кроме вас, не поможет нам выиграть бой с этой задачей. И на линию огня сейчас пойдет Игорь Каширин.
У Игорька, так же как и у Лены Исаевой, годовой оценкой по математике в III классе была тройка. Но то было в III классе, а уже в V и Лена и Игорь стали лучшими учениками класса, и в их экранах успеваемости по математике стояли одни только пятерки. И никто из многочисленных посетителей уроков в экспериментальном классе даже представить себе не мог, какими беспомощными были эти ребята всего только год назад. Гости представить не могли, но дети в классе отлично понимают и знают, кто сейчас у доски, кто решает такие задачи, и уже на следующем уроке поднимаются новые руки, затаенной надеждой на немыслимый еще вчера успех загораются новые глаза. О "резерве главного командования" на одном из родительских собраний непременно ставятся в известность родители - пусть не возмущаются сообщением сына или дочери о том, что их "сегодня не вызывали, хотя руку они поднимали". Пусть понимают, что их ребенок поднялся на новую высоту. В этом скрыт еще один побуждающий мотив содружества семьи и школы.
"Резерв" - "резервом", а долгое молчание ребят, входящих в него, никак не может благотворно влиять на их отношение ко всему происходящему на уроке. Гипертрофия в использовании этого методического приема неизбежно повлечет за собой спад активности лучших ребят, а это чревато самыми неприятными последствиями. В экспериментальных классах подобного не происходило никогда - лучшие учащиеся всегда оставались самыми активными. Причин тому много, но одна из них в том, что, когда класс думает над решением задачи, им, уже поднявшим руки, предлагается приступить к черновым расчетам, составлению итоговых уравнений и даже к записи решения в тетрадь набело, если все расчеты окажутся верными и будет получен правильный ответ. Это даст им в конце урока несколько свободных минут, и, как уже было сказано, они или раньше других уйдут домой, если идет последний урок, или приступят к выполнению домашних заданий. Проверку правильности решений проводит учитель, если задача сложная и решивших ее ранее других не столь уж много, или это
делается в форме парного контроля, или десантом, или цепочкой - было бы что проверять
Но как же быть, если в систему взаимопроверки просочится ошибка и у одного из ребят или одновременно у двоих в паре окажутся неверными ответы? Такое тоже не исключено - часто проверяются не только готовые записи, но и черновые наброски. Не беда! За время, пока лучшие оформляют свои решения, к доске обычно уже выходит ученик и начинает работать перед всем классом. Тетради же, которыми обменялись ребята при парном контроле, остаются у тех, кто их проверял, и окончательное решение о правильности выполненных операций выносится только тогда, когда четко прорисовывается весь ход решения на доске.
Это могут все
10 октября 1986 г. V экспериментальный класс. Тема урока "Решение упражнений". K началу урока во время перемены подготовлена классная доска, на которой учителем сделаны следующие записи и числовые пометки (см. рис.).
|