|
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
1. /егэ 22 марта/Вариант ь1.docx
2. /егэ 22 марта/Вариант ь11.docx
3. /егэ 22 марта/Вариант ь6.docx
4. /егэ 22 марта/Вариант ь 8.docx
5. /егэ 22 марта/Вариант ь10.docx
6. /егэ 22 марта/Вариант ь12.docx
7. /егэ 22 марта/Вариант ь13.docx
8. /егэ 22 марта/Вариант ь14.docx
9. /егэ 22 марта/Вариант ь15.docx
10. /егэ 22 марта/Вариант ь2.docx
11. /егэ 22 марта/Вариант ь3.docx
12. /егэ 22 марта/Вариант ь4.docx
13. /егэ 22 марта/Вариант ь5.docx
14. /егэ 22 марта/Вариант ь7.docx
15. /егэ 22 марта/Вариант ь9.docx
|
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
|
Вариант 6 ----математика -----11 класс------- Новокубанский район------
2014
Вариант 6
Инструкция по выполнению работы
На выполнение заданий варианта КИМ по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание.
Часть 1 содержит 10 заданий (заданияВ1-В10) базового уровня сложности, проверяющих наличие практических математических знаний и умений.
Часть 2 содержит 11 заданий (задания В11-В15 и С1-С6) повышенного и высокого уровней по материалу курса математики средней школы, проверяющих уровень профильной математической подготовки.
Ответом к каждому из заданий В1-В15 является целое число или конечная десятичная дробь. При выполнении заданий С1 – С6 требуется записать полное решение и ответ.
Все бланки ЕГЭ заполняются яркими черными чернилами. Допускается использование гелевой, капиллярной или перьевой ручки.
При выполнении заданий Вы можете пользоваться черновиком. Обращаем Ваше внимание, что записи в черновике не будут учитываться при оценивании работы.
Советуем выполнять задания в том порядке, как они даны. Для экономии времени пропускайте задание, которое не удается выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, вы сможете вернуться к пропущенным заданиям.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Желаем успеха!
Часть 1
Ответом на задания В1-В10 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.
|
В1. В пачке 250 листов бумаги формата А4. За неделю в офисе расходуется 1300 листов. Какое наименьшее количество пачек бумаги нужно купить в офис на 8 недель?
В2. При оплате услуг через платежный терминал взимается комиссия 9%. Терминал принимает суммы, кратные 10 рублям. Месячная плата за интернет составляет 800 рублей. Какую минимальную сумму положить в приемное устройство терминала, чтобы на счету фирмы, предоставляющей интернет-услуги, оказалась сумма, не меньшая 800 рублей?
В3.На диаграмме показано распределение выплавки меди в 11 странах мира (в тысячах тонн) за 2006 год. Среди представленных стран первое место по выплавке меди занимала Папуа – Новая Гвинея, одиннадцатое место — Индия. Какое место занимал Лаос?

В4. Рейтинговое агентство определяет рейтинг соотношения «цена-качество» электрических фенов для волос. Рейтинг вычисляется на основе средней цены , а также оценок функциональности , качества и дизайна , которые эксперты оценивают целыми числами от 0 до 4. Итоговый рейтинг вычисляется по формуле 
В таблице даны оценки каждого показателя для нескольких моделей фенов. Определите, какая модель имеет наименьший рейтинг. В ответ запишите значение этого рейтинга.
Модель фена
|
Средняя цена
|
Функциональность
|
Качество
|
Дизайн
|
А
|
5200
|
4
|
1
|
0
|
Б
|
1600
|
0
|
0
|
2
|
В
|
4400
|
1
|
0
|
3
|
Г
|
4000
|
1
|
1
|
2
|
В5. Найдите (в см2) площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите .

В6. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 16 участников из России, в том числе Тарас Куницын. Найдите вероятность того, что в первом туре Тарас Куницын будет играть с каким-либо бадминтонистом из России?
В7. Найдите корень уравнения .
В8. Найдите угол между биссектрисами углов параллелограмма, прилежащих к одной стороне. Ответ дайте в градусах.
В9. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

В10. Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса.

Образующая конуса равна 50 . Найдите радиус сферы.
Не забудьте перенести ответы в бланк ответов №1
|
Часть 2
Ответом на задания В1-В10 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.
|
В11. Найдите значение выражения при 
В12. Независимое агентство намерено ввести рейтинг новостных изданий на основе показателей информативности , оперативности и объективности публикаций. Каждый показатель оценивается целыми числами от -3 до 3.
Аналитик, составляющий формулу, считает, что информативность публикаций ценится вдвое, а объективность — вчетверо дороже, чем оперативность. В результате, формула примет вид

Каким должно быть число , чтобы издание, у которого все показатели наибольшие, получило рейтинг 10?
В13. В правильной четырёхугольной пирамиде с основанием боковое ребро равно 39, сторона основания равна . Найдите объём пирамиды.
В14. Теплоход, скорость которого в неподвижной воде равна 22 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 2 часа, а в исходный пункт теплоход возвращается через 46 часов после отплытия из него. Сколько километров прошел теплоход за весь рейс?
В15. Найдите наибольшее значение функции на отрезке ![[0;\frac{3\pi}{2}]](3_html_54da6602.png)
Не забудьте перенести ответы в бланк ответов №1
|
Для записи решений и ответов на задания С1-С-6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания (С1,С2 и т.д.), а затем полное решение и ответ.
|
C1.а) Решите уравнение 
б) Найдите все корни этого уравнения, принадлежащие отрезку 
C2. В правильной четырехугольной пирамиде MABCD c вершиной M стороны основания равны 6, а боковые ребра равны 12. Найдите площадь сечения пирамиды плоскостью, проходящей через точку C и середину ребра MA параллельно прямой BD.
С3. Решите систему неравенств

С4. Продолжение общей хорды АВ двух пересекающихся окружностей радиусов 8 и 2 пересекает их общую касательную в точке С, точка А лежит между В и С, а М и N – точки касания.
а) Докажите, что отношение расстояний от точки С до прямых АМ и AN равно ½
б) Найдите радиус окружности, проходящей через точки А, М и N.
С5. Найдите все значения , при каждом из которых уравнение 
имеет единственный корень.
С6. За круглым столом сидят 4 гнома. Перед каждым стоит кружка с молоком. Один из гномов переливает ¼ своего молока соседу справа. Затем сосед справа делает то же самое. Затем то же самое делает следующий сосед справа и наконец четвёртый гном ¼ оказавшегося у него молока наливает первому. Во всех кружках вместе молока 2 л. Сколько молока было первоначально в кружках, если
а) в конце у всех гномов молока оказалось поровну?
б) в конце у всех гномов оказалось молока столько, сколько было в начале?
|
|
|