|
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
1. /егэ 22 марта/Вариант ь1.docx
2. /егэ 22 марта/Вариант ь11.docx
3. /егэ 22 марта/Вариант ь6.docx
4. /егэ 22 марта/Вариант ь 8.docx
5. /егэ 22 марта/Вариант ь10.docx
6. /егэ 22 марта/Вариант ь12.docx
7. /егэ 22 марта/Вариант ь13.docx
8. /егэ 22 марта/Вариант ь14.docx
9. /егэ 22 марта/Вариант ь15.docx
10. /егэ 22 марта/Вариант ь2.docx
11. /егэ 22 марта/Вариант ь3.docx
12. /егэ 22 марта/Вариант ь4.docx
13. /егэ 22 марта/Вариант ь5.docx
14. /егэ 22 марта/Вариант ь7.docx
15. /егэ 22 марта/Вариант ь9.docx
|
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
Инструкция по выполнению работы На выполнение заданий варианта ким по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание
|
Вариан №5 ------- математика-----11 класс ----Новокубанский район-----
2014
Вариант 5
Инструкция по выполнению работы
На выполнение заданий варианта КИМ по математике дается 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 21 задание.
Часть 1 содержит 10 заданий (заданияВ1-В10) базового уровня сложности, проверяющих наличие практических математических знаний и умений.
Часть 2 содержит 11 заданий (задания В11-В15 и С1-С6) повышенного и высокого уровней по материалу курса математики средней школы, проверяющих уровень профильной математической подготовки.
Ответом к каждому из заданий В1-В15 является целое число или конечная десятичная дробь. При выполнении заданий С1 – С6 требуется записать полное решение и ответ.
Все бланки ЕГЭ заполняются яркими черными чернилами. Допускается использование гелевой, капиллярной или перьевой ручки.
При выполнении заданий Вы можете пользоваться черновиком. Обращаем Ваше внимание, что записи в черновике не будут учитываться при оценивании работы.
Советуем выполнять задания в том порядке, как они даны. Для экономии времени пропускайте задание, которое не удается выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, вы сможете вернуться к пропущенным заданиям.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Желаем успеха!
Часть 1
Ответом на задания В1-В10 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.
|
В1. На счету Юлиного мобильного телефона было 77 рублей, а после разговора с Антоном осталось 41 рубль. Сколько минут длился разговор с Антоном, если одна минута разговора стоит 1 рубль 50 копеек.
В2. Шариковая ручка стоит 30 рублей. Какое наибольшее число таких ручек можно будет купить на 500 рублей после повышения цены на 20%?
В3. На рисунке жирными точками показана цена нефти на момент закрытия биржевых торгов во все рабочие дни с 4 по 19 апреля 2002 года. По горизонтали указываются числа месяца, по вертикали — цена барреля нефти в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа цена нефти на момент закрытия торгов составила 24 доллара за баррель.

В4. Рейтинговое агентство определяет рейтинг соотношения «цена-качество» электрических фенов для волос. Рейтинг вычисляется на основе средней цены , а также оценок функциональности , качества и дизайна , которые эксперты оценивают целыми числами от 0 до 4. Итоговый рейтинг вычисляется по формуле

В таблице даны оценки каждого показателя для нескольких моделей фенов. Определите, какая модель имеет наименьший рейтинг. В ответ запишите значение этого рейтинга.
Модель фена
|
Средняя цена
|
Функциональность
|
Качество
|
Дизайн
|
А
|
5700
|
0
|
0
|
2
|
Б
|
3500
|
3
|
4
|
3
|
В
|
4200
|
3
|
3
|
4
|
Г
|
5700
|
4
|
3
|
0
|
В5. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

В6. В сборнике билетов по истории всего 40 билетов, в 16 из них встречается вопрос по смутному времени. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по смутному времени.
В7. Найдите корень уравнения .
В8. Найдите градусную меру дуги окружности, на которую опирается угол . Ответ дайте в градусах.

В9. На рисунке изображён график дифференцируемой функции y=f(x) и отмечены семь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7. В скольких из этих точек производная функции f(x) положительна?

В10.
Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы – прямые).
Не забудьте перенести ответы в бланк ответов №1
|
Часть 2
Ответом на задания В1-В10 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.
|
В11. Найдите значение выражения .
В12. В ходе распада радиоактивного изотопа его масса уменьшается по закону , где (мг) — начальная масса изотопа, (мин.) — время, прошедшее от начального момента, (мин.) — период полураспада. В начальный момент времени масса изотопа мг. Период его полураспада мин. Через сколько минут масса изотопа будет равна 2 мг?
В13. Основанием пирамиды является прямоугольник со сторонами 4 и 5. Ее объем равен 40. Найдите высоту этой пирамиды.
В14. Первые 200 км автомобиль ехал со скоростью 60 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 140 км — со скоростью 120 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.
В15. Найдите точку минимума функции .
Не забудьте перенести ответы в бланк ответов №1
|
Для записи решений и ответов на задания С1-С-6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания (С1,С2 и т.д.), а затем полное решение и ответ.
|
C1.а) Решите уравнение 
б)Найдите все корни этого уравнения, принадлежащие отрезку 
C2. В правильной четырехугольной призме ABCDA1B1C1D1 сторона основания равна 20, а боковое ребро AA1=7. Точка M принадлежит ребру A1D1 и делит его в отношении 2:3, считая от вершины D1. Найдите площадь сечения призмы плоскостью, проходящей через точки B,D и M.
С3. Решите систему неравенств

С4. В окружность радиуса R вписан треугольник АВС. Вторая окружность радиуса r, концентрическая с первой, касается одной стороны треугольника и делит каждую из двух других сторон на три равные части.
а) Докажите, что треугольник АВС равнобедренный.
б) Найдите r:R.
С5. Найдите все значения , при каждом из которых уравнение
имеет хотя бы один корень.
С6. Дано трехзначное натуральное число (число не может начинаться с нуля), не кратное 100.
а) Может ли частное этого числа и суммы его цифр быть равным 90?
б) Может ли частное этого числа и суммы его цифр быть равным 88?
в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр?
|
|
|